1 |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2 |
TUCK M T. Partial purification of a 6-methyladenine mRNA methyltransferase which modifies internal adenine residues[J]. Biochem J, 1992, 288(Pt 1): 233-240.
|
3 |
WANG X, HE C. Dynamic RNA modifications in posttranscriptional regulation[J]. Mol Cell, 2014, 56(1): 5-12.
|
4 |
OERUM S, MEYNIER V, CATALA M, et al. A comprehensive review of m6A/m6Am RNA methyltransferase structures[J]. Nucleic Acids Res, 2021, 49(13): 7239-7255.
|
5 |
LEE Y, CHOE J, PARK O H, et al. Molecular mechanisms driving mRNA degradation by m6A modification[J]. Trends Genet, 2020, 36(3): 177-188.
|
6 |
FRYE M, HARADA B T, BEHM M, et al. RNA modifications modulate gene expression during development[J]. Science, 2018, 361(6409): 1346-1349.
|
7 |
CHEN X Y, ZHANG J, ZHU J S. The role of m6A RNA methylation in human cancer[J]. Mol Cancer, 2019, 18(1): 103.
|
8 |
YUE B, SONG C L, YANG L X, et al. METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition and metastasis of gastric cancer[J]. Mol Cancer, 2019, 18(1): 142.
|
9 |
WANG Q, CHEN C, DING Q Q, et al. METTL3-mediated m6A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance[J]. Gut, 2020, 69(7): 1193-1205.
|
10 |
ZHANG C, ZHANG M Q, GE S, et al. Reduced m6A modification predicts malignant phenotypes and augmented Wnt/PI3K-Akt signaling in gastric cancer[J]. Cancer Med, 2019, 8(10): 4766-4781.
|
11 |
LIU N, ZHANG C, ZHANG L. WTAP-involved the m6A modification of lncRNA FAM83H-AS1 accelerates the development of gastric cancer[J]. Mol Biotechnol, 2023.DOI:10.1007/s12033-023-00810-2.
|
12 |
LIU Y, DA M. Wilms tumor 1 associated protein promotes epithelial mesenchymal transition of gastric cancer cells by accelerating TGF-β and enhances chemoradiotherapy resistance[J]. J Cancer Res Clin Oncol, 2023, 149(7): 3977-3988.
|
13 |
BAI X W, WONG C C, PAN Y S, et al. Loss of YTHDF1 in gastric tumors restores sensitivity to antitumor immunity by recruiting mature dendritic cells[J]. J Immunother Cancer, 2022, 10(2): e003663.
|
14 |
LIU T, YANG S, CHENG Y P, et al. The N6-methyladenosine (m6A) methylation gene YTHDF1 reveals a potential diagnostic role for gastric cancer[J]. Cancer Manag Res, 2020, 12: 11953-11964.
|
15 |
CHEN W, HE Q J, LIU J J, et al. PLAGL2 promotes snail expression and gastric cancer progression via UCA1/miR-145-5p/YTHDF1 axis[J]. Carcinogenesis, 2023, 44(4): 328-340.
|
16 |
YANG H, HU Y R, WENG M Z, et al. Hypoxia inducible lncRNA-CBSLR modulates ferroptosis through m6A-YTHDF2-dependent modulation of CBS in gastric cancer[J]. J Adv Res, 2022, 37: 91-106.
|
17 |
SHEN X D, ZHAO K, XU L M, et al. YTHDF2 inhibits gastric cancer cell growth by regulating FOXC2 signaling pathway[J]. Front Genet, 2020, 11: 592042.
|
18 |
HUANG Y, YAN J L, LI Q, et al. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5[J]. Nucleic Acids Res, 2015, 43(1): 373-384.
|
19 |
ZHOU J, WAN J, GAO X W, et al. Dynamic m6A mRNA methylation directs translational control of heat shock response[J]. Nature, 2015, 526(7574): 591-594.
|
20 |
WANG X, LU Z K, GOMEZ A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability[J]. Nature, 2014, 505(7481): 117-120.
|
21 |
WANG X, ZHAO B S, ROUNDTREE I A, et al. N6-methyladenosine modulates messenger RNA translation efficiency[J]. Cell, 2015, 161(6): 1388-1399.
|
22 |
LIU N, DAI Q, ZHENG G, et al. N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions[J]. Nature, 2015, 518(7540): 560-564.
|
23 |
UEDA Y, OOSHIO I, FUSAMAE Y, et al. AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells[J]. Sci Rep, 2017, 7: 42271.
|
24 |
JIA G F, FU Y, ZHAO X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nat Chem Biol, 2011, 7(12): 885-887.
|
25 |
LI Y, WU K, QUAN W, et al. The dynamics of FTO binding and demethylation from the m6A motifs[J]. RNA Biol, 2019, 16(9): 1179-1189.
|
26 |
MAUER J, LUO X B, BLANJOIE A, et al. Reversible methylation of m6Am in the 5' cap controls mRNA stability[J]. Nature, 2017, 541(7637): 371-375.
|
27 |
WEI J B, LIU F G, LU Z K, et al. Differential m6A, m6Am, and m1A demethylation mediated by FTO in the cell nucleus and cytoplasm[J]. Mol Cell, 2018, 71(6): 973-985.e5.
|
28 |
DINA C, MEYRE D, GALLINA S, et al. Variation in FTO contributes to childhood obesity and severe adult obesity[J]. Nat Genet, 2007, 39(6): 724-726.
|
29 |
SCUTERI A, SANNA S, CHEN W M, et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits[J]. PLoS Genet, 2007, 3(7): e115.
|
30 |
LI Y, SU R, DENG X, et al. FTO in cancer: functions, molecular mechanisms, and therapeutic implications[J]. Trends Cancer, 2022, 8(7): 598-614.
|
31 |
ZHENG G Q, DAHL J A, NIU Y M, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J]. Mol Cell, 2013, 49(1): 18-29.
|
32 |
TANG B, YANG Y H, KANG M, et al. m6A demethylase ALKBH5 inhibits pancreatic cancer tumorigenesis by decreasing WIF-1 RNA methylation and mediating Wnt signaling[J]. Mol Cancer, 2020, 19(1): 3.
|
33 |
QU J W, YAN H M, HOU Y F, et al. RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential[J]. J Hematol Oncol, 2022, 15(1): 8.
|
34 |
JIANG Y, WAN Y C, GONG M, et al. RNA demethylase ALKBH5 promotes ovarian carcinogenesis in a simulated tumour microenvironment through stimulating NF-κB pathway[J]. J Cell Mol Med, 2020, 24(11): 6137-6148.
|
35 |
HU Y Y, GONG C L, LI Z B, et al. Demethylase ALKBH5 suppresses invasion of gastric cancer via PKMYT1 m6A modification[J]. Mol Cancer, 2022, 21(1): 34.
|
36 |
CHEN Z J, QI M J, SHEN B, et al. Transfer RNA demethylase ALKBH3 promotes cancer progression via induction of tRNA-derived small RNAs[J]. Nucleic Acids Res, 2019, 47(5): 2533-2545.
|
37 |
SHIMURA T, KANDIMALLA R, OKUGAWA Y, et al. Novel evidence for m6A methylation regulators as prognostic biomarkers and FTO as a potential therapeutic target in gastric cancer[J]. Br J Cancer, 2022, 126(2): 228-237.
|
38 |
ZHANG L, HOU Y H, ASHKTORAB H, et al. The impact of C-MYC gene expression on gastric cancer cell[J]. Mol Cell Biochem, 2010, 344(1-2): 125-135.
|
39 |
YANG Z, JIANG X D, ZHANG Z H, et al. HDAC3-dependent transcriptional repression of FOXA2 regulates FTO/m6A/MYC signaling to contribute to the development of gastric cancer[J]. Cancer Gene Ther, 2021, 28(1-2): 141-155.
|
40 |
SU R, DONG L, LI C Y, et al. R-2HG exhibits anti-tumor activity by targeting FTO/m6A/MYC/CEBPA signaling[J]. Cell, 2018, 172(1-2): 90-105.e23.
|
41 |
GUO C M, CHU H J, GONG Z H, et al. HOXB13 promotes gastric cancer cell migration and invasion via IGF-1R upregulation and subsequent activation of PI3K/AKT/mTOR signaling pathway[J]. Life Sci, 2021, 278: 119522.
|
42 |
GUAN K L, LIU X, LI J H, et al. Expression status and prognostic value of m6A-associated genes in gastric cancer[J]. J Cancer, 2020, 11(10): 3027-3040.
|
43 |
GE L C, ZHANG N, CHEN Z J, et al. Level of N6-methyladenosine in peripheral blood RNA: a novel predictive biomarker for gastric cancer[J]. Clin Chem, 2020, 66(2): 342-351.
|
44 |
FENG S T, QIU G Q, YANG L H, et al. Omeprazole improves chemosensitivity of gastric cancer cells by m6A demethylase FTO-mediated activation of mTORC1 and DDIT3 up-regulation[J]. Biosci Rep, 2021, 41(1): BSR20200842.
|
45 |
ZHANG Y, GAO L X, WANG W, et al. m6A demethylase fat mass and obesity-associated protein regulates cisplatin resistance of gastric cancer by modulating autophagy activation through ULK1[J]. Cancer Sci, 2022, 113(9): 3085-3096.
|
46 |
YU H, ZHAO K, ZENG H, et al. N6-methyladenosine (m6A) methyltransferase WTAP accelerates the Warburg effect of gastric cancer through regulating HK2 stability[J]. Biomed Pharmacother, 2021, 133: 111075.
|
47 |
ZHOU Y, WANG Q, DENG H F, et al. N6-methyladenosine demethylase FTO promotes growth and metastasis of gastric cancer via m6A modification of caveolin-1 and metabolic regulation of mitochondrial dynamics[J]. Cell Death Dis, 2022, 13(1): 72.
|
48 |
ZHANG J, GUO S, PIAO H Y, et al. ALKBH5 promotes invasion and metastasis of gastric cancer by decreasing methylation of the lncRNA NEAT1[J]. J Physiol Biochem, 2019, 75(3): 379-389.
|
49 |
ZHANG C Z, ZHI W I, LU H Q, et al. Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells[J]. Oncotarget, 2016, 7(40): 64527-64542.
|
50 |
KONISHI N, NAKAMURA M, ISHIDA E, et al. High expression of a new marker PCA-1 in human prostate carcinoma[J]. Clin Cancer Res, 2005, 11(14): 5090-5097.
|
51 |
YAMATO I, SHO M, SHIMADA K, et al. PCA-1/ALKBH3 contributes to pancreatic cancer by supporting apoptotic resistance and angiogenesis[J]. Cancer Res, 2012, 72(18): 4829-4839.
|
52 |
PILŽYS T, MARCINKOWSKI M, KUKWA W, et al. ALKBH overexpression in head and neck cancer: potential target for novel anticancer therapy[J]. Sci Rep, 2019, 9(1): 13249.
|
53 |
TASAKI M, SHIMADA K, KIMURA H, et al. ALKBH3, a human AlkB homologue, contributes to cell survival in human non-small-cell lung cancer[J]. Br J Cancer, 2011, 104(4): 700-706.
|
54 |
WOO H H, CHAMBERS S K. Human ALKBH3-induced m1A demethylation increases the CSF-1 mRNA stability in breast and ovarian cancer cells[J]. Biochim Biophys Acta Gene Regul Mech, 2019, 1862(1): 35-46.
|