| [1] |
PALAVECINO E L. Clinical, epidemiologic, and laboratory aspects of methicillin-resistant Staphylococcus aureus infections[J]. Methods Mol Biol, 2020, 2069: 1-28.
|
| [2] |
郭燕, 胡付品, 朱德妹, 等. 2022年CHINET三级医院细菌耐药监测[J]. 中国感染与化疗杂志, 2024, 24(3): 277-286.
|
|
GUO Y, HU F P, ZHU D M, et al. Surveillance of bacterial resistance in tertiary hospitals across China: results of CHINET Antimicrobial Resistance Surveillance Program in 2022[J]. Chinese Journal of Infection and Chemotherapy, 2024, 24(3): 277-286.
|
| [3] |
邱杰, 苏明宽, 吴海英. 葡萄球菌A蛋白快速检测金黄色葡萄球菌的临床监测与研究[J]. 临床合理用药杂志, 2018, 11(11): 100-101.
|
|
QIU J, SU M K, WU H Y. Clinical monitoring and research on the rapid detection of Staphylococcus aureus by staphylococcal protein A[J]. Chinese Journal of Clinical Rational Drug Use, 2018, 11(11): 100-101.
|
| [4] |
RIGI G, GHAEDMOHAMMADI S, AHMADIAN G. A comprehensive review on staphylococcal protein A (SpA): its production and applications[J]. Biotechnol Appl Biochem, 2019, 66(3): 454-464.
|
| [5] |
邹自英, 韩黎, 熊杰, 等. 金黄色葡萄球菌临床分离株spa分型和耐药特征研究[J]. 中国感染与化疗杂志, 2014, 14(2): 142-145.
|
|
ZOU Z Y, HAN L, XIONG J, et al. spa Typing and resistance profile of Staphylococcus aureus isolated from clinical specimens[J]. Chinese Journal of Infection and Chemotherapy, 2014, 14(2): 142-145.
|
| [6] |
HALLIN M, FRIEDRICH A W, STRUELENS M J. spa Typing for epidemiological surveillance of Staphylococcus aureus[J]. Methods Mol Biol, 2009, 551: 189-202.
|
| [7] |
GUO Y L, SONG G H, SUN M L, et al. Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus[J]. Front Cell Infect Microbiol, 2020, 10: 107.
|
| [8] |
GIULIERI S G, TONG S Y C, WILLIAMSON D A. Using genomics to understand meticillin- and vancomycin-resistant Staphylococcus aureus infections[J]. Microb Genom, 2020, 6(1): e000324.
|
| [9] |
LAM J C, STOKES W. The golden grapes of wrath-Staphylococcus aureus bacteremia: a clinical review[J]. Am J Med, 2023, 136(1): 19-26.
|
| [10] |
LAKHUNDI S, ZHANG K Y. Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology[J]. Clin Microbiol Rev, 2018, 31(4): e00020-18.
|
| [11] |
武杰, 赵建平. 耐甲氧西林金黄色葡萄球菌分型方法研究进展[J]. 中国感染与化疗杂志, 2021, 21(2): 235-240.
|
|
WU J, ZHAO J P. Advances in typing methods of methicillin-resistant Staphylococcus aureus[J]. Chinese Journal of Infection and Chemotherapy, 2021, 21(2): 235-240.
|
| [12] |
CHARALAMPOUS T, KAY G L, RICHARDSON H, et al. Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection[J]. Nat Biotechnol, 2019, 37(7): 783-792.
|
| [13] |
WANG M, FU A S, HU B, et al. Nanopore targeted sequencing for the accurate and comprehensive detection of SARS-CoV-2 and other respiratory viruses[J]. Small, 2020, 16(32): e2002169.
|
| [14] |
SLIZOVSKIY I B, OLIVA M, SETTLE J K, et al. Target-enriched long-read sequencing (TELSeq) contextualizes antimicrobial resistance genes in metagenomes[J]. Microbiome, 2022, 10(1): 185.
|
| [15] |
QUAN J, LANGELIER C, KUCHTA A, et al. FLASH: a next-generation CRISPR diagnostic for multiplexed detection of antimicrobial resistance sequences[J]. Nucleic Acids Res, 2019, 47(14): e83.
|
| [16] |
SERPA P H, DENG X D, ABDELGHANY M, et al. Metagenomic prediction of antimicrobial resistance in critically ill patients with lower respiratory tract infections[J]. Genome Med, 2022, 14(1): 74.
|
| [17] |
WANG S W, GAO C, ZHENG Y M, et al. Current applications and future perspective of CRISPR/Cas9 gene editing in cancer[J]. Mol Cancer, 2022, 21(1): 57.
|
| [18] |
WANG Y H, ZHAO Y, BOLLAS A, et al. Nanopore sequencing technology, bioinformatics and applications[J]. Nat Biotechnol, 2021, 39(11): 1348-1365.
|
| [19] |
杨影, 谢水莲, 万绍贵, 等. 基于Cas9靶向富集的纳米孔高通量基因测序技术的应用进展[J]. 赣南医学院学报, 2022, 42(4): 342-347.
|
|
YANG Y, XIE S L, WAN S G, et al. The applications of high-throughput nanopore based Cas9-targeted sequencing [J]. Journal of Gannan Medical University, 2022, 42(4): 342-347.
|
| [20] |
GILPATRICK T, LEE I, GRAHAM J E, et al. Targeted nanopore sequencing with Cas9-guided adapter ligation[J]. Nat Biotechnol, 2020, 38(4): 433-438.
|
| [21] |
BARTELS M D, PETERSEN A, WORNING P, et al. Comparing whole-genome sequencing with Sanger sequencing for spa typing of methicillin-resistant Staphylococcus aureus[J]. J Clin Microbiol, 2014, 52(12): 4305-4308.
|
| [22] |
YAMAGUCHI T, ONO D, SATO A. Staphylococcal cassette chromosome mec (SCCmec) analysis of MRSA[J]. Methods Mol Biol, 2020, 2069: 59-78.
|
| [23] |
窦宇红, 梁鸿, 何玥, 等. qPCR快速检测金黄色葡萄球菌及MRSA方法的建立及评价[J]. 中国感染控制杂志, 2018, 17(9): 764-769.
|
|
DOU Y H, LIANG H, HE Y, et al. Establishment and evaluation of a quantitative real-time PCR assay for rapid detection of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus[J]. Chinese Journal of Infection Control, 2018, 17(9): 764-769.
|
| [24] |
CHIBA M, AOYAGI T, YOSHIDA M, et al. Evaluation of the performance of GeneSoC®, a novel rapid real-time PCR system, to detect Staphylococcus aureus and methicillin resistance in blood cultures[J]. J Infect Chemother, 2023, 29(7): 718-721.
|
| [25] |
BILGRAU A E, FALGREEN S, PETERSEN A, et al. Unaccounted uncertainty from qPCR efficiency estimates entails uncontrolled false positive rates[J]. BMC Bioinformatics, 2016, 17: 159.
|