1 |
申珂, 郭娜娜, 邓健,等. 中国近 40 年慢性病疾病谱变化情况[J]. 山西医药杂志, 2017, 46(8): 903-905.
|
2 |
Galbete A, Cambra K, Forga L, et al. Achievement of cardiovascular risk factor targets according to sex and previous history of cardiovascular disease in type 2 diabetes: a population-based study[J]. J Diabetes Complicat, 2019, 33(12): 107445.
|
3 |
Association AD. Standards of medical care in diabetes: 2020 abridged for primary care providers[J]. Clin Diabetes, 2020, 38(1): 10-38.
|
4 |
Zhu JH, Yu XX, Zheng YY, et al. Association of glucose-lowering medications with cardiovascular outcomes: an umbrella review and evidence map[J]. Lancet Diabetes Endocrinol, 2020, 8(3): 192-205.
|
5 |
Douros A, Dell'Aniello S, Yu OHY, et al. Sulfonylureas as second line drugs in type 2 diabetes and the risk of cardiovascular and hypoglycaemic events: population based cohort study[J]. BMJ, 2018, 362: k2693.
|
6 |
Turner RC, Holman RR, Cull CA, et al. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group[J]. Lancet, 1998, 352(9131): 837-853.
|
7 |
Gerstein HC, Miller ME, Byington RP, et al. Effects of intensive glucose lowering in type 2 diabetes[J]. N Engl J Med, 2008, 358(24): 2545-2559.
|
8 |
Schnell O, Standl E, Catrinoiu D, et al. Report from the 1st cardiovascular outcome trial (CVOT) summit of the diabetes & cardiovascular disease (D&CVD) EASD study group[J]. Cardiovasc Diabetol, 2016, 15: 33.
|
9 |
Basile J. A new approach to glucose control in type 2 diabetes: the role of kidney sodium-glucose co-transporter 2 inhibition[J]. Postgrad Med, 2011, 123(4): 38-45.
|
10 |
Ferrannini E, Solini A. SGLT2 inhibition in diabetes mellitus: rationale and clinical prospects[J]. Nat Rev Endocrinol, 2012, 8(8): 495-502.
|
11 |
Han SP, Hagan DL, Taylor JR, et al. Dapagliflozin, a selective SGLT2 inhibitor, improves glucose homeostasis in normal and diabetic rats[J]. Diabetes, 2008, 57(6): 1723-1729.
|
12 |
Pancholia AK. Sodium-glucose cotransporter-2 inhibition for the reduction of cardiovascular events in high-risk patients with diabetes mellitus[J]. Indian Heart J, 2018, 70(6): 915-921.
|
13 |
Powell J, Miller SA, Taylor JR. Sodium-glucose cotransporter 2 inhibitors: the new option for diabetes mellitus management[J]. South Med J, 2015, 108(2): 82-90.
|
14 |
Allegretti AS, Zhang WB, Zhou WJ, et al. Safety and effectiveness of bexagliflozin in patients with type 2 diabetes mellitus and stage 3a/3b CKD[J]. Am J Kidney Dis, 2019, 74(3): 328-337.
|
15 |
Ku EJ, Lee DH, Jeon HJ, et al. Empagliflozin versus dapagliflozin in patients with type 2 diabetes inadequately controlled with metformin, glimepiride and dipeptidyl peptide 4 inhibitors: a 52-week prospective observational study[J]. Diabetes Res Clin Pract, 2019, 151: 65-73.
|
16 |
高武通. 钠葡萄糖同向转运蛋白2抑制剂治疗2型糖尿病的研究新进展[J]. 浙江医学, 2018, 40(16): 1882-1885.
|
17 |
Matthews D, Fulcher G, Perkovic V, et al. Efficacy and safety of Canagliflozin (CANA), an inhibitor of Sodium Glucose Co-Transporter 2 (SGLT2), added on to insulin therapy with or without oral agents in type 2 diabetes (T2D)[J]. Diabetol Und Stoffwechsel, 2013, 8(S01). DOI: 10.1055/s-0033-1341911.
|
18 |
Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes[J]. N Engl J Med, 2015, 373(22): 2117-2128.
|
19 |
Kosiborod M, Cavender MA, Fu AZ, et al. Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL study (comparative effectiveness of cardiovascular outcomes in new users of sodium-glucose cotransporter-2 inhibitors)[J]. Circulation, 2017, 136(3): 249-259.
|
20 |
Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes[J]. N Engl J Med, 2017, 377(7): 644-657.
|
21 |
Patorno E, Goldfine AB, Schneeweiss S, et al. Cardiovascular outcomes associated with canagliflozin versus other non-gliflozin antidiabetic drugs: population based cohort study[J]. BMJ, 2018, 360: k119.
|
22 |
Kosiborod M, Lam CSP, Kohsaka S, et al. Cardiovascular events associated with SGLT-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL 2 study[J]. J Am Coll Cardiol, 2018, 71(23): 2628-2639.
|
23 |
Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes[J]. N Engl J Med, 2019, 380(4): 347-357.
|
24 |
McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction[J]. N Engl J Med, 2019, 381(21): 1995-2008.
|
25 |
Zelniker TA, Wiviott SD, Raz I, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials[J]. Lancet, 2019, 393(10166): 31-39.
|
26 |
Ghezzi C, Yu AS, Hirayama BA, et al. Dapagliflozin binds specifically to sodium-glucose cotransporter 2 in the proximal renal tubule[J]. J Am Soc Nephrol, 2017, 28(3): 802-810.
|
27 |
Verma S, McMurray JJV, Cherney DZI. The metabolodiuretic promise of sodium-dependent glucose cotransporter 2 inhibition: the search for the sweet spot in heart failure[J]. JAMA Cardiol, 2017, 2(9): 939-940.
|
28 |
Hallow KM, Helmlinger G, Greasley PJ, et al. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis[J]. Diabetes Obes Metab, 2018, 20(3): 479-487.
|
29 |
Li CG, Zhang J, Xue M, et al. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart[J]. Cardiovasc Diabetol, 2019, 18(1): 15.
|
30 |
Fedak PW, Verma S, Weisel RD, et al. Cardiac remodeling and failure From molecules to man (Part II) [J]. Cardiovasc Pathol, 2005, 14(2): 49-60.
|
31 |
Lee TM, Chang NC, Lin SZ. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts[J]. Free Radic Biol Med, 2017, 104: 298-310.
|
32 |
Mizuno Y, Harada E, Nakagawa H, et al. The diabetic heart utilizes ketone bodies as an energy source[J]. Metab Clin Exp, 2017, 77: 65-72.
|
33 |
Verma S, McMurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review[J]. Diabetologia, 2018, 61(10): 2108-2117.
|