1 |
Sedgwick B. Repairing DNA-methylation damage[J]. Nat Rev Mol Cell Biol, 2004, 5(2): 148-157.
|
2 |
Taverna P, Sedgwick B. Generation of an endogenous DNA-methylating agent by nitrosation in Escherichia coli[J]. J Bacteriol, 1996, 178(17): 5105-5111.
|
3 |
Samson L, Cairns J. A new pathway for DNA repair in Escherichia coli[J]. Nature, 1977, 267(5608): 281-283.
|
4 |
Trewick SC, Henshaw TF, Hausinger RP, et al. Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage[J]. Nature, 2002, 419(6903): 174-178.
|
5 |
Chen FY, Tang Q, Bian K, et al. Adaptive response enzyme AlkB preferentially repairs 1-methylguanine and 3-methylthymine adducts in double-stranded DNA[J]. Chem Res Toxicol, 2016, 29(4): 687-693.
|
6 |
Delaney JC, Smeester L, Wong C, et al. AlkB reverses etheno DNA lesions caused by lipid oxidation in vitro and in vivo[J]. Nat Struct Mol Biol, 2005, 12(10): 855-860.
|
7 |
Liu Y, Yuan Q, Xie L. The AlkB family of Fe (II)/alpha-ketoglutarate-dependent dioxygenases modulates embryogenesis through epigenetic regulation[J]. Curr Stem Cell Res Ther, 2018, 13(2): 136-143.
|
8 |
Yi C, Yang CG, He C. A non-heme iron-mediated chemical demethylation in DNA and RNA[J]. Acc Chem Res, 2009, 42(4): 519-529.
|
9 |
Hausinger RP. Fe(II)/alpha-ketoglutarate-dependent hydroxylases and related enzymes[J]. Crit Rev Biochem Mol Biol, 2004, 39(1): 21-68.
|
10 |
Liu FG, Clark W, Luo GZ, et al. ALKBH1-mediated tRNA demethylation regulates translation[J]. Cell, 2016, 167(7): 1897.
|
11 |
Tian LF, Liu YP, Chen LQ, et al. Structural basis of nucleic acid recognition and 6mA demethylation by human ALKBH1[J]. Cell Res, 2020, 30(3): 272-275.
|
12 |
Zhang M, Yang SM, Nelakanti R, et al. Mammalian ALKBH1 serves as an N6-mA demethylase of unpairing DNA[J]. Cell Res, 2020, 30(3): 197-210.
|
13 |
Xu C, Liu K, Tempel W, et al. Structures of human ALKBH5 demethylase reveal a unique binding mode for specific single-stranded N6-methyladenosine RNA demethylation[J]. J Biol Chem, 2014, 289(25): 17299-17311.
|
14 |
Gerken T, Girard CA, Tung YC, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase[J]. Science, 2007, 318(5855): 1469-1472.
|
15 |
Zhang X, Wei LH, Wang YX, et al. Structural insights into FTO′s catalytic mechanism for the demethylation of multiple RNA substrates[J]. Proc Natl Acad Sci USA, 2019, 116(8): 2919-2924.
|
16 |
Chen BE, Liu HC, Sun XX, et al. Mechanistic insight into the recognition of single-stranded and double-stranded DNA substrates by ABH2 and ABH3[J]. Mol Biosyst, 2010, 6(11): 2143-2149.
|
17 |
Duncan T, Trewick SC, Koivisto P, et al. Reversal of DNA alkylation damage by two human dioxygenases[J]. Proc Natl Acad Sci USA, 2002, 99(26): 16660-16665.
|
18 |
Li MM, Nilsen A, Shi Y, et al. ALKBH4-dependent demethylation of actin regulates actomyosin dynamics[J]. Nat Commun, 2013, 4: 1832.
|
19 |
Fu D, Jordan JJ, Samson LD. Human ALKBH7 is required for alkylation and oxidation-induced programmed necrosis[J]. Genes Dev, 2013, 27(10): 1089-1100.
|
20 |
Jordan JJ, Chhim S, Margulies CM, et al. ALKBH7 drives a tissue and sex-specific necrotic cell death response following alkylation-induced damage[J]. Cell Death Dis, 2017, 8(7): e2947.
|
21 |
Ohshio I, Kawakami R, Tsukada Y, et al. ALKBH8 promotes bladder cancer growth and progression through regulating the expression of survivin[J]. Biochem Biophys Res Commun, 2016, 477(3): 413-418.
|
22 |
Fedeles BI, Singh V, Delaney JC, et al. The AlkB family of Fe(II)/α-ketoglutarate-dependent dioxygenases: repairing nucleic acid alkylation damage and beyond[J]. J Biol Chem, 2015, 290(34): 20734-20742.
|
23 |
Lee DH, Jin SG, Cai S, et al. Repair of methylation damage in DNA and RNA by mammalian AlkB homologues[J]. J Biol Chem, 2005, 280(47): 39448-39459.
|
24 |
Aas PA, Otterlei M, Falnes PO, et al. Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA[J]. Nature, 2003, 421(6925): 859-863.
|
25 |
Sundheim O, Vågbø CB, Bjørås M, et al. Human ABH3 structure and key residues for oxidative demethylation to reverse DNA/RNA damage[J]. EMBO J, 2006, 25(14): 3389-3397.
|
26 |
Yang CG, Yi CQ, Duguid EM, et al. Crystal structures of DNA/RNA repair enzymes AlkB and ABH2 bound to dsDNA[J]. Nature, 2008, 452(7190): 961-965.
|
27 |
Monsen VT, Sundheim O, Aas PA, et al. Divergent ß-hairpins determine double-strand versus single-strand substrate recognition of human AlkB-homologues 2 and 3[J]. Nucleic Acids Res, 2010, 38(19): 6447-6455.
|
28 |
Dango S, Mosammaparast N, Sowa ME, et al. DNA unwinding by ASCC3 helicase is coupled to ALKBH3-dependent DNA alkylation repair and cancer cell proliferation[J]. Mol Cell, 2011, 44(3): 373-384.
|
29 |
Brickner JR, Soll JM, Lombardi PM, et al. A ubiquitin-dependent signalling axis specific for ALKBH-mediated DNA dealkylation repair[J]. Nature, 2017, 551(7680): 389-393.
|
30 |
Yoshizawa S, Fourmy D, Puglisi JD. Recognition of the Codon-anticodon helix by ribosomal RNA[J]. Science, 1999, 285(5434): 1722-1725.
|
31 |
Li XY, Xiong XS, Wang K, et al. Transcriptome-wide mapping reveals reversible and dynamic N1-methyladenosine methylome[J]. Nat Chem Biol, 2016, 12(5): 311-316.
|
32 |
Ueda Y, Ooshio I, Fusamae Y, et al. AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells[J]. Sci Rep, 2017, 7: 42271.
|
33 |
Chen ZJ, Qi MJ, Shen B, et al. Transfer RNA demethylase ALKBH3 promotes cancer progression via induction of tRNA-derived small RNAs[J]. Nucleic Acids Res, 2019, 47(5): 2533-2545.
|
34 |
Moore LD, Le T, Fan G. DNA methylation and its basic function[J]. Neuropsychopharmacology, 2013, 38(1): 23-38.
|
35 |
Liefke R, Windhof-Jaidhauser IM, Gaedcke J, et al. The oxidative demethylase ALKBH3 marks hyperactive gene promoters in human cancer cells[J]. Genome Med, 2015, 7(1): 66.
|
36 |
Konishi N, Nakamura M, Ishida E, et al. High expression of a new marker PCA-1 in human prostate carcinoma[J]. Clin Cancer Res, 2005, 11(14): 5090-5097.
|
37 |
Koike K, Ueda Y, Hase H, et al. Anti-tumor effect of AlkB homolog 3 knockdown in hormone- independent prostate cancer cells[J]. Curr Cancer Drug Targets, 2012, 12(7): 847-856.
|
38 |
Pilžys T, Marcinkowski M, Kukwa W, et al. ALKBH overexpression in head and neck cancer: potential target for novel anticancer therapy[J]. Sci Rep, 2019, 9(1): 13249.
|
39 |
Yamato I, Sho M, Shimada K, et al. PCA-1/ALKBH3 contributes to pancreatic cancer by supporting apoptotic resistance and angiogenesis[J]. Cancer Res, 2012, 72(18): 4829-4839.
|
40 |
Tasaki M, Shimada K, Kimura H, et al. ALKBH3, a human AlkB homologue, contributes to cell survival in human non-small-cell lung cancer[J]. Br J Cancer, 2011, 104(4): 700-706.
|
41 |
Woo HH, Chambers SK. Human ALKBH3-induced m1A demethylation increases the CSF-1 mRNA stability in breast and ovarian cancer cells[J]. Biochim Biophys Acta Gene Regul Mech, 2019, 1862(1): 35-46.
|
42 |
Hotta K, Sho M, Fujimoto K, et al. Clinical significance and therapeutic potential of prostate cancer antigen-1/ALKBH3 in human renal cell carcinoma[J]. Oncol Rep, 2015, 34(2): 648-654.
|
43 |
Wang Q, Wang G, Wang Y, et al. Association of AlkB homolog 3 expression with tumor recurrence and unfavorable prognosis in hepatocellular carcinoma[J]. J Gastroenterol Hepatol, 2018, 33(9):1617-1625.
|
44 |
Nakao S, Mabuchi M, Shimizu T, et al. Design and synthesis of prostate cancer antigen-1 (PCA-1/ALKBH3) inhibitors as anti-prostate cancer drugs[J]. Bioorg Med Chem Lett, 2014, 24(4): 1071-1074.
|
45 |
Nigam R, Babu KR, Ghosh T, et al. Indenone derivatives as inhibitor of human DNA dealkylation repair enzyme AlkBH3[J]. Bioorg Med Chem, 2018, 26(14): 4100-4112.
|
46 |
Li Q, Huang Y, Liu XC, et al. Rhein inhibits AlkB repair enzymes and sensitizes cells to methylated DNA damage[J]. J Biol Chem, 2016, 291(21): 11083-11093.
|