1 |
Fanelli V, Ranieri VM. Mechanisms and clinical consequences of acute lung injury[J]. Ann Am Thorac Soc, 2015, 12(): S3-S8.
|
2 |
Butt Y, Kurdowska A, Allen TC. Acute lung injury: a clinical and molecular review[J]. Arch Pathol Lab Med, 2016, 140(4): 345-350.
|
3 |
Hughes KT, Beasley MB. Pulmonary manifestations of acute lung injury: more than just diffuse alveolar damage[J]. Arch Pathol Lab Med, 2017, 141(7): 916-922.
|
4 |
Allen TC, Kurdowska A. Interleukin 8 and acute lung injury[J]. Arch Pathol Lab Med, 2014, 138(2): 266-269.
|
5 |
Chambers E, Rounds S, Lu Q. Pulmonary endothelial cell apoptosis in emphysema and acute lung injury[J]. Adv Anat Embryol Cell Biol, 2018, 228: 63-86.
|
6 |
Johnson ER, Matthay MA. Acute lung injury: epidemiology, pathogenesis, and treatment[J]. J Aerosol Med Pulm Drug Deliv, 2010, 23(4): 243-252.
|
7 |
Fujishima S, Gando S, Daizoh S, et al. Infection site is predictive of outcome in acute lung injury associated with severe Sepsis and septic shock[J]. Respirology, 2016, 21(5): 898-904.
|
8 |
Zhang Y, Li X, Grailer JJ, et al. Melatonin alleviates acute lung injury through inhibiting the NLRP3 inflammasome[J]. J Pineal Res, 2016, 60(4): 405-414.
|
9 |
Morales-Ortíz J, Deal V, Reyes F, et al. Platelet-derived TLT-1 is a prognostic indicator in ALI/ARDS and prevents tissue damage in the lungs in a mouse model[J]. Blood, 2018, 132(23): 2495-2505.
|
10 |
Song Z, Cui Y, Ding MZ, et al. Protective effects of recombinant human brain natriuretic peptide against LPS-induced acute lung injury in dogs[J]. Int Immunopharmacol, 2013, 17(3): 508-512.
|
11 |
Passmore MR, Byrne L, Obonyo NG, et al. Inflammation and lung injury in an ovine model of fluid resuscitated endotoxemic shock[J]. Respir Res, 2018, 19(1): 231.
|
12 |
Vlaar AP, Juffermans NP. Transfusion-related acute lung injury: a clinical review[J]. Lancet, 2013, 382(9896): 984-994.
|
13 |
Semple JW, Rebetz J, Kapur R. Transfusion-associated circulatory overload and transfusion-related acute lung injury[J]. Blood, 2019, 133(17): 1840-1853.
|
14 |
Vlaar APJ, Hofstra JJ, Kulik W, et al. Supernatant of stored platelets causes lung inflammation and coagulopathy in a novel in vivo transfusion model[J]. Blood, 2010, 116(8): 1360-1368.
|
15 |
Fung YL, Kim M, Tabuchi A, et al. Recipient T lymphocytes modulate the severity of antibody-mediated transfusion-related acute lung injury[J]. Blood, 2010, 116(16): 3073-3079.
|
16 |
Kelher MR, Masuno T, Moore EE, et al. Plasma from stored packed red blood cells and MHC class I antibodies causes acute lung injury in a 2-event in vivo rat model[J]. Blood, 2009, 113(9): 2079-2087.
|
17 |
Stolz A, Schutzner J, Lischke R. Pulmonary contusion[J]. Rozhl Chir, 96(12): 488-92.
|
18 |
Kao RL, Huang W, Martin CM, et al. The effect of aerosolized indomethacin on lung inflammation and injury in a rat model of blunt chest trauma[J]. Can J Surg, 2018, 61(6): S208-S218.
|
19 |
Wang S, Ruan Z, Zhang J, et al. A modified rat model of isolated bilateral pulmonary contusion[J]. Exp Ther Med, 2012, 4(3): 425-429.
|
20 |
Aksu B, Ayvaz S, Aksu F, et al. Effects of sphingosylphosphorylcholine against oxidative stress and acute lung injury ınduced by pulmonary contusion in rats[J]. J Pediatr Surg, 2015, 50(4): 591-597.
|
21 |
Smith S, McCully B, Bommiasamy A, et al. A combat relevant model for the creation of acute lung injury in swine[J]. J Trauma Acute Care Surg, 2018, 85(1S ): S39-S43.
|
22 |
Dhar SM, Breite MD, Barnes SL, et al. Pulmonary contusion in mechanically ventilated subjects after severe trauma[J]. Respir Care, 2018, 63(8): 950-954.
|
23 |
López-Alonso I, Blázquez-Prieto J, Amado-Rodríguez L, et al. Preventing loss of mechanosensation by the nuclear membranes of alveolar cells reduces lung injury in mice during mechanical ventilation[J]. Sci Transl Med, 2018, 10(456): eaam7598.
|
24 |
Neudecker V, Brodsky KS, Clambey ET, et al. Neutrophil transfer of miR-223 to lung epithelial cells dampens acute lung injury in mice[J]. Sci Transl Med, 2017, 9(408): eaah5360.
|
25 |
Kreyer S, Scaravilli V, Linden K, et al. Early utilization of extracorporeal CO2 removal for treatment of acute respiratory distress syndrome due to smoke inhalation and burns in sheep[J]. Shock, 2016, 45(1): 65-72.
|
26 |
Chen K, Xu ZC, Liu YK, et al. Irisin protects mitochondria function during pulmonary ischemia/reperfusion injury[J]. Sci Transl Med, 2017, 9(418): eaao6298.
|
27 |
Jia Y, Chen K, Lin P, et al. Treatment of acute lung injury by targeting MG53-mediated cell membrane repair[J]. Nat Commun, 2014, 5: 4387.
|
28 |
Grimm JC, Zhang F, Magruder JT, et al. Accumulation and cellular localization of nanoparticles in an ex vivo model of acute lung injury[J]. J Surg Res, 2017, 210: 78-85.
|
29 |
Patel BV, Wilson MR, Takata M. Resolution of acute lung injury and inflammation: a translational mouse model[J]. Eur Respir J, 2012, 39(5): 1162-1170.
|
30 |
Liu Y, Tao T, Li WZ, et al. Regulating autonomic nervous system homeostasis improves pulmonary function in rabbits with acute lung injury[J]. BMC Pulm Med, 2017, 17(1): 98.
|
31 |
Allard B, Panariti A, Pernet E, et al. Tolerogenic signaling of alveolar macrophages induces lung adaptation to oxidative injury[J]. J Allergy Clin Immunol, 2019, 144(4): 945-961.e9.
|
32 |
Carnesecchi S, Deffert C, Pagano A, et al. NADPH oxidase-1 plays a crucial role in hyperoxia-induced acute lung injury in mice[J]. Am J Respir Crit Care Med, 2009, 180(10): 972-981.
|
33 |
Rangarajan S, Bone NB, Zmijewska AA, et al. Metformin reverses established lung fibrosis in a bleomycin model[J]. Nat Med, 2018, 24(8): 1121-1127.
|
34 |
Sherman MA, Suresh MV, Dolgachev VA, et al. Molecular characterization of hypoxic alveolar epithelial cells after lung contusion indicates an important role for HIF-1α[J]. Ann Surg, 2018, 267(2): 382-391.
|
35 |
Aires ID, Boia R, Rodrigues-Neves AC, et al. Blockade of microglial adenosine A2A receptor suppresses elevated pressure-induced inflammation, oxidative stress, and cell death in retinal cells[J]. Glia, 2019, 67(5): 896-914.
|
36 |
Grzanka R, Damasiewicz-Bodzek A, Kasperska-Zajac A. Tumor necrosis factor-α and Fas/Fas ligand signaling pathways in chronic spontaneous urticaria[J]. Allergy Asthma Clin Immunol, 2019, 15: 15.
|
37 |
Voicu S, Balas M, Stan M, et al. Amorphous silica nanoparticles obtained by laser ablation induce inflammatory response in human lung fibroblasts[J]. Materials, 2019, 12(7): 1026.
|
38 |
de Langhe E, Vande Velde G, Hostens J, et al. Quantification of lung fibrosis and emphysema in mice using automated micro-computed tomography[J]. PLoS One, 2012, 7(8): e43123.
|
39 |
Langheinrich AC, Leithäuser B, Greschus S, et al. Acute rat lung injury: feasibility of assessment with micro-CT[J]. Radiology, 2004, 233(1): 165-171.
|