
上海交通大学学报(医学版) ›› 2021, Vol. 41 ›› Issue (8): 1120-1124.doi: 10.3969/j.issn.1674-8115.2021.08.021
出版日期:2021-08-28
发布日期:2021-07-28
通讯作者:
葛莉萍,电子信箱:1959610568@qq.com。作者简介:吴 丹(1984—),女,副主任医师,硕士;电子信箱:247660143@qq.com。
基金资助:Online:2021-08-28
Published:2021-07-28
Contact:
GE Li-ping, E-mail: 1959610568@qq.com.Supported by:摘要:
妊娠期糖尿病是指患者妊娠前糖代谢正常、妊娠期出现的糖耐量异常,表现为机体脂肪、肌肉等组织对胰岛素的敏感性降低,血糖水平异常,严重影响母体及子代健康。妊娠期糖尿病患者在产后及其子代罹患2型糖尿病及其他代谢性疾病的风险明显增加。研究发现,表观遗传修饰如DNA甲基化参与妊娠期糖尿病的发生及母胎并发症的发生过程。在妊娠期糖尿病患者多种临床标本如胎盘、脐血、外周血与脂肪等组织中,发现多个基因的甲基化水平改变,并可通过“胎儿编程”的方式影响子代终生。该文对妊娠期糖尿病相关基因的DNA甲基化研究进展进行综述。
中图分类号:
吴丹, 葛莉萍. 妊娠期糖尿病患者基因DNA甲基化的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(8): 1120-1124.
Dan WU, Li-ping GE. Research progress of DNA methylation in gestational diabetes mellitus[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(8): 1120-1124.
| Specimen type | Gene involved in methylation | Impact of changes in methylation levels | Reference |
|---|---|---|---|
| Maternal side of placenta (from the mother, Homo sapiens) | DLK1 | Glycemia | [ |
| PPARGC1, PDX1 | Fetal glucose metabolism | [ | |
| IGF2 | Birth weight | [ | |
| PPARGC1A | Newborn birth weight | [ | |
| LPL | Energy homeostasis | [ | |
| MEST, NR3C1 | Obesity | [ | |
| G6PD, IGF | Hyperglycemia, oxidative stress and fetal macrosomia | [ | |
| Peripheral blood (from the mother, Homo sapiens) | CAMTA1 | Insulin synthesis and secretion | [ |
| IL10 | Inflammation | [ | |
| G6PD, IGF | Hyperglycemia, oxidative stress and fetal macrosomia | [ | |
| NDUFC1, HAPLN3, RHOG, et al | Cell morphology, cellular organization and cell cycle | [ | |
| Cord blood (from the mother, Homo sapiens) | OR2L13, CYP2E1 | Autism and diabetes | [ |
| IGF2 | Fetal growth and newborn birth weight | [ | |
| MEST, NR3C1 | Obesity predisposition | [ | |
| HIF3A, et al | Metabolic phenotype | [ | |
| ARHGEF11 | Macrosomia | [ | |
| Adipose and omental tissue (from the mother, Homo sapiens) | TNF, SOCS3 | Inflamation | [ |
| HIF3A | Insulin resistance | [ | |
| MSLN | Antigen process and presentation | [ | |
| Umbilical cord blood lymphocyte (from the mother, Homo sapiens) | MCAT | Mitochondrial fatty acid synthesis and insulin resistance | [ |
| Fetal side of the placenta (from the offspring, Homo sapiens) | DLK1 | Newborn birth weight | [ |
| LPL | Energy homeostasis | [ | |
| Adipose tissue (from the offspring, Homo sapiens) | PPARGC1A | Insulin secretion and metabolic disease | [ |
| ADIPOQ, RETN | Metabolic disease | [ | |
| Muscle (from the offspring, Homo sapiens) | PPARGC1A | Insulin secretion and metabolic disease | [ |
| Dental epithelial stem cell (from the offspring, Homo sapiens) | APEX1 | Proliferation and self-renew | [ |
| Pancreas (from the offspring, Mus musculus) | Gnas, Fbp2, Wnt2, et al | Glycolipids metabolism | [ |
| Pancreatic islet (from the offspring, Mus musculus) | Abcc8, et al | Insulin secretion | [ |
| Heart (from the offspring, Mus musculus) | Sirt1 | Heart ischemia sensitive phenotype | [ |
| Placenta (from the offspring, Mus musculus) | Dlk1, et al | Insulin pathway | [ |
| Primordial germ cell (from the offspring, Mus musculus) | Fyn | Obesity and insulin resistance | [ |
表1 GDM相关组织样本中DNA甲基化水平的改变
Tab 1 Changes of DNA methylation levels in GDM-related specimens
| Specimen type | Gene involved in methylation | Impact of changes in methylation levels | Reference |
|---|---|---|---|
| Maternal side of placenta (from the mother, Homo sapiens) | DLK1 | Glycemia | [ |
| PPARGC1, PDX1 | Fetal glucose metabolism | [ | |
| IGF2 | Birth weight | [ | |
| PPARGC1A | Newborn birth weight | [ | |
| LPL | Energy homeostasis | [ | |
| MEST, NR3C1 | Obesity | [ | |
| G6PD, IGF | Hyperglycemia, oxidative stress and fetal macrosomia | [ | |
| Peripheral blood (from the mother, Homo sapiens) | CAMTA1 | Insulin synthesis and secretion | [ |
| IL10 | Inflammation | [ | |
| G6PD, IGF | Hyperglycemia, oxidative stress and fetal macrosomia | [ | |
| NDUFC1, HAPLN3, RHOG, et al | Cell morphology, cellular organization and cell cycle | [ | |
| Cord blood (from the mother, Homo sapiens) | OR2L13, CYP2E1 | Autism and diabetes | [ |
| IGF2 | Fetal growth and newborn birth weight | [ | |
| MEST, NR3C1 | Obesity predisposition | [ | |
| HIF3A, et al | Metabolic phenotype | [ | |
| ARHGEF11 | Macrosomia | [ | |
| Adipose and omental tissue (from the mother, Homo sapiens) | TNF, SOCS3 | Inflamation | [ |
| HIF3A | Insulin resistance | [ | |
| MSLN | Antigen process and presentation | [ | |
| Umbilical cord blood lymphocyte (from the mother, Homo sapiens) | MCAT | Mitochondrial fatty acid synthesis and insulin resistance | [ |
| Fetal side of the placenta (from the offspring, Homo sapiens) | DLK1 | Newborn birth weight | [ |
| LPL | Energy homeostasis | [ | |
| Adipose tissue (from the offspring, Homo sapiens) | PPARGC1A | Insulin secretion and metabolic disease | [ |
| ADIPOQ, RETN | Metabolic disease | [ | |
| Muscle (from the offspring, Homo sapiens) | PPARGC1A | Insulin secretion and metabolic disease | [ |
| Dental epithelial stem cell (from the offspring, Homo sapiens) | APEX1 | Proliferation and self-renew | [ |
| Pancreas (from the offspring, Mus musculus) | Gnas, Fbp2, Wnt2, et al | Glycolipids metabolism | [ |
| Pancreatic islet (from the offspring, Mus musculus) | Abcc8, et al | Insulin secretion | [ |
| Heart (from the offspring, Mus musculus) | Sirt1 | Heart ischemia sensitive phenotype | [ |
| Placenta (from the offspring, Mus musculus) | Dlk1, et al | Insulin pathway | [ |
| Primordial germ cell (from the offspring, Mus musculus) | Fyn | Obesity and insulin resistance | [ |
| 1 | Chiefari E, Arcidiacono B, Foti D, et al. Gestational diabetes mellitus: an updated overview[J]. J Endocrinol Invest, 2017, 40(9): 899-909. |
| 2 | Catalano PM, Kirwan JP, Haugel-de Mouzon S, et al. Gestational diabetes and insulin resistance: role in short- and long-term implications for mother and fetus[J]. J Nutr, 2003, 133(5 ): 1674S-1683S. |
| 3 | Wong CC, Caspi A, Williams B, et al. A longitudinal study of epigenetic variation in twins[J]. Epigenetics, 2010, 5(6): 516-526. |
| 4 | Gluckman PD, Hanson MA, Buklijas T, et al. Epigenetic mechanisms that underpin metabolic and cardiovascular diseases[J]. Nat Rev Endocrinol, 2009, 5(7): 401-408. |
| 5 | Tobi EW, Lumey LH, Talens RP, et al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific[J]. Hum Mol Genet, 2009, 18(21): 4046-4053. |
| 6 | Zhao BH, Jiang Y, Zhu H, et al. Placental δ-like 1 gene DNA methylation levels are related to mothers' blood glucose concentration[J]. J Diabetes Res, 2019, 2019: 9521510. |
| 7 | Wang LZ, Fan HL, Zhou LD, et al. Altered expression of PGC-1α and PDX1 and their methylation status are associated with fetal glucose metabolism in gestational diabetes mellitus[J]. Biochem Biophys Res Commun, 2018, 501(1): 300-306. |
| 8 | Su RN, Wang C, Feng H, et al. Alteration in expression and methylation of IGF2/H19 in placenta and umbilical cord blood are associated with macrosomia exposed to intrauterine hyperglycemia[J]. PLoS One, 2016, 11(2): e0148399. |
| 9 | Xie XM, Gao HJ, Zeng WJ, et al. Placental DNA methylation of peroxisome-proliferator-activated receptor-γ co-activator-1α promoter is associated with maternal gestational glucose level[J]. Clin Sci (Lond), 2015, 129(4): 385-394. |
| 10 | Côté S, Gagné-Ouellet V, Guay SP, et al. PPARGC1α gene DNA methylation variations in human placenta mediate the link between maternal hyperglycemia and leptin levels in newborns[J]. Clin Epigenetics, 2016, 8: 72. |
| 11 | Houde AA, St-Pierre J, Hivert MF, et al. Placental lipoprotein lipase DNA methylation levels are associated with gestational diabetes mellitus and maternal and cord blood lipid profiles[J]. J Dev Orig Health Dis, 2014, 5(2): 132-141. |
| 12 | Gagné-Ouellet V, Houde AA, Guay SP, et al. Placental lipoprotein lipase DNA methylation alterations are associated with gestational diabetes and body composition at 5 years of age[J]. Epigenetics, 2017, 12(8): 616-625. |
| 13 | El Hajj N, Pliushch G, Schneider E, et al. Metabolic programming of MEST DNA methylation by intrauterine exposure to gestational diabetes mellitus[J]. Diabetes, 2013, 62(4): 1320-1328. |
| 14 | Steyn A, Crowther NJ, Norris SA, et al. Epigenetic modification of the pentose phosphate pathway and the IGF-axis in women with gestational diabetes mellitus[J]. Epigenomics, 2019, 11(12): 1371-1385. |
| 15 | Cvitic S, Novakovic B, Gordon L, et al. Human fetoplacental arterial and venous endothelial cells are differentially programmed by gestational diabetes mellitus, resulting in cell-specific barrier function changes[J]. Diabetologia, 2018, 61(11): 2398-2411. |
| 16 | Houde AA, Ruchat SM, Allard C, et al. LRP1B, BRD2 and CACNA1D: new candidate genes in fetal metabolic programming of newborns exposed to maternal hyperglycemia[J]. Epigenomics, 2015, 7(7): 1111-1122. |
| 17 | Wang YH, Xu XX, Sun H, et al. Cord blood leptin DNA methylation levels are associated with macrosomia during normal pregnancy[J]. Pediatr Res, 2019, 86(3): 305-310. |
| 18 | Yan J, Su RN, Zhang WY, et al. Epigenetic alteration of rho guanine nucleotide exchange Factor 11 (ARHGEF11) in cord blood samples in macrosomia exposed to intrauterine hyperglycemia[J]. J Matern Fetal Neonatal Med, 2021, 34(3): 422-431. |
| 19 | Weng XL, Liu FT, Zhang H, et al. Genome-wide DNA methylation profiling in infants born to gestational diabetes mellitus[J]. Diabetes Res Clin Pract, 2018, 142: 10-18. |
| 20 | Haertle L, El Hajj N, Dittrich M, et al. Epigenetic signatures of gestational diabetes mellitus on cord blood methylation[J]. Clin Epigenetics, 2017, 9: 28. |
| 21 | Howe CG, Cox B, Fore R, et al. Maternal gestational diabetes mellitus and newborn DNA methylation: findings from the pregnancy and childhood epigenetics consortium[J]. Diabetes Care, 2020, 43(1): 98-105. |
| 22 | Wu P, Farrell WE, Haworth KE, et al. Maternal genome-wide DNA methylation profiling in gestational diabetes shows distinctive disease-associated changes relative to matched healthy pregnancies[J]. Epigenetics, 2018, 13(2): 122-128. |
| 23 | Zhang Y, Ye JP, Fan JX. Regulation of malonyl-CoA-acyl carrier protein transacylase network in umbilical cord blood affected by intrauterine hyperglycemia[J]. Oncotarget, 2017, 8(43): 75254-75263. |
| 24 | Chen DQ, Zhang AP, Fang M, et al. Increased methylation at differentially methylated region of GNAS in infants born to gestational diabetes[J]. BMC Med Genet, 2014, 15: 108. |
| 25 | Dias S, Adam S, Van Wyk N, et al. Global DNA methylation profiling in peripheral blood cells of South African women with gestational diabetes mellitus[J]. Biomarkers, 2019, 24(3): 225-231. |
| 26 | Dias S, Adam S, Rheeder P, et al. Altered genome-wide DNA methylation in peripheral blood of South African women with gestational diabetes mellitus[J]. Int J Mol Sci, 2019, 20(23): 5828. |
| 27 | Enquobahrie DA, Moore A, Muhie S, et al. Early pregnancy maternal blood DNA methylation in repeat pregnancies and change in gestational diabetes mellitus status: a pilot study[J]. Reprod Sci, 2015, 22(7): 904-910. |
| 28 | Kang J, Lee CN, Li HY, et al. Association of interleukin-10 methylation levels with gestational diabetes in a Taiwanese population[J]. Front Genet, 2018, 9: 222. |
| 29 | Rancourt RC, Ott R, Ziska T, et al. Visceral adipose tissue inflammatory factors (TNF-α, SOCS3) in gestational diabetes (GDM): epigenetics as a clue in GDM pathophysiology[J]. Int J Mol Sci, 2020, 21(2): 479. |
| 30 | Zhang YH, Chen YY, Qu HM, et al. Methylation of HIF3A promoter CpG islands contributes to insulin resistance in gestational diabetes mellitus[J]. Mol Genet Genomic Med, 2019, 7(4): e00583. |
| 31 | Ott R, Melchior K, Stupin JH, et al. Reduced insulin receptor expression and altered DNA methylation in fat tissues and blood of women with GDM and offspring[J]. J Clin Endocrinol Metab, 2019, 104(1): 137-149. |
| 32 | Ott R, Stupin JH, Melchior K, et al. Alterations of adiponectin gene expression and DNA methylation in adipose tissues and blood cells are associated with gestational diabetes and neonatal outcome[J]. Clin Epigenetics, 2018, 10(1): 131. |
| 33 | Deng XL, Yang YL, Sun H, et al. Analysis of whole genome-wide methylation and gene expression profiles in visceral omental adipose tissue of pregnancies with gestational diabetes mellitus[J]. J Chin Med Assoc, 2018, 81(7): 623-630. |
| 34 | Houshmand-Oeregaard A, Hansen NS, Hjort L, et al. Differential adipokine DNA methylation and gene expression in subcutaneous adipose tissue from adult offspring of women with diabetes in pregnancy[J]. Clin Epigenetics, 2017, 9: 37. |
| 35 | Zhu ZL, Chen XF, Xiao YQ, et al. Gestational diabetes mellitus alters DNA methylation profiles in pancreas of the offspring mice[J]. J Diabetes Complications, 2019, 33(1): 15-22. |
| 36 | Zhu H, Chen B, Cheng Y, et al. Insulin therapy for gestational diabetes mellitus does not fully protect offspring from diet-induced metabolic disorders[J]. Diabetes, 2019, 68(4): 696-708. |
| 37 | Ren J, Cheng Y, Ming ZH, et al. Intrauterine hyperglycemia exposure results in intergenerational inheritance via DNA methylation reprogramming on F1 PGCs[J]. Epigenetics Chromatin, 2018, 11(1): 20. |
| 38 | Hjort L, Martino D, Grunnet LG, et al. Gestational diabetes and maternal obesity are associated with epigenome-wide methylation changes in children[J]. JCI Insight, 2018, 3(17): e122572. |
| 39 | Jiang Y, Yu YC, Ding GL, et al. Intrauterine hyperglycemia induces intergenerational Dlk1-Gtl2 methylation changes in mouse placenta[J]. Oncotarget, 2018, 9(32): 22398-22405. |
| 40 | Kelstrup L, Hjort L, Houshmand-Oeregaard A, et al. Gene expression and DNA methylation of PPARGC1A in muscle and adipose tissue from adult offspring of women with diabetes in pregnancy[J]. Diabetes, 2016, 65(10): 2900-2910. |
| 41 | Chen GQ, Chen J, Yan ZL, et al. Maternal diabetes modulates dental epithelial stem cells proliferation and self-renewal in offspring through apurinic/apyrimidinicendonuclease 1-mediated DNA methylation[J]. Sci Rep, 2017, 7: 40762. |
| 42 | Banik A, Kandilya D, Ramya S, et al. Maternal factors that induce epigenetic changes contribute to neurological disorders in offspring[J]. Genes (Basel), 2017, 8(6): 150. |
| 43 | Quilter CR, Cooper WN, Cliffe KM, et al. Impact on offspring methylation patterns of maternal gestational diabetes mellitus and intrauterine growth restraint suggest common genes and pathways linked to subsequent type 2 diabetes risk[J]. FASEB J, 2014, 28(11): 4868-4879. |
| 44 | Blue EK, Sheehan BM, Nuss ZV, et al. Epigenetic regulation of placenta-specific 8 contributes to altered function of endothelial colony-forming cells exposed to intrauterine gestational diabetes mellitus[J]. Diabetes, 2015, 64(7): 2664-2675. |
| 45 | Chen ZW, Gong L, Zhang P, et al. Epigenetic down-regulation of Sirtlvia DNA methylation and oxidative stress signaling contributes to the gestational diabetes mellitus-induced fetal programming of heart ischemia-sensitive phenotype in late life[J]. Int J Biol Sci, 2019, 15(6): 1240-1251. |
| 46 | Cao JL, Zhang L, Li J, et al. Up-regulation of miR-98 and unraveling regulatory mechanisms in gestational diabetes mellitus[J]. Sci Rep, 2016, 6: 32268. |
| 47 | Liu YF, Tan QY, Liu F. Differentially methylated circulating DNA: a novel biomarker to monitor β cell death[J]. J Diabetes Complications, 2018, 32(3): 349-353. |
| [1] | 张欣欣, 颜崇淮. 铅毒性的表观遗传学机制研究进展[J]. 上海交通大学学报(医学版), 2025, 45(4): 500-507. |
| [2] | 王青, 韩晓, 张晓波. 表观遗传修饰调控肺炎免疫应答的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(7): 931-938. |
| [3] | 刘芊若, 方子晨, 吴宇涵, 钟羡欣, 国沐禾, 贾洁. 肠道菌群及其代谢产物与妊娠期糖尿病相关性的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(5): 641-647. |
| [4] | 张越, 瞿蕾, 谷沁, 朱亦清, 马莉莹, 孙文广. 妊娠期糖尿病孕妇尿酮体持续阳性对母婴临床结局的影响[J]. 上海交通大学学报(医学版), 2023, 43(3): 314-319. |
| [5] | 彭恬, 徐雷鸣. 表观遗传修饰与环状RNA在结直肠癌中相互作用的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(2): 237-243. |
| [6] | 王婕, 吴慧, 卢凌鹏, 杨科峰, 祝捷, 周恒益, 姚蝶, 高雅, 冯宇婷, 刘玉红, 贾洁. 妊娠期糖尿病女性肠道菌群的变化特征及其与血糖、血脂和膳食的相关性[J]. 上海交通大学学报(医学版), 2022, 42(9): 1336-1346. |
| [7] | 高菲, 卢宇, 董书琴, 杨柳, 吴邵花, 韦静. 孕早期成纤维生长因子19亚族对妊娠期糖尿病的预测价值[J]. 上海交通大学学报(医学版), 2022, 42(7): 898-903. |
| [8] | 吴侠霏, 方婕, 漆洪波, 余昕烊. 妊娠期糖尿病对C57BL/6J子代成年鼠神经精神功能的影响[J]. 上海交通大学学报(医学版), 2022, 42(4): 422-432. |
| [9] | 谷沁, 夏英倩, 朱亦清, 马莉莹, 瞿蕾, 孙文广. 妊娠期糖尿病孕妇一日门诊饮食个体化指导对血糖控制、体质量增速和妊娠结局的影响分析[J]. 上海交通大学学报(医学版), 2022, 42(2): 185-191. |
| [10] | 杨科峰, 贾洁, 丁天泽, 张硕, 李心怡, 祝捷, 刘玉红, 卢凌鹏, 吴慧. n⁃3多不饱和脂肪酸、汞与妊娠期糖尿病的关联[J]. 上海交通大学学报(医学版), 2022, 42(12): 1739-1744. |
| [11] | 成英杰, 孙倩倩, 赵敏. 甲基苯丙胺使用和成瘾的表观遗传研究进展[J]. 上海交通大学学报(医学版), 2021, 41(8): 1094-1098. |
| [12] | 刘庆, 蔡雯, 张瑞晴, 卢聪, 张佳荣, 徐先明. 妊娠期脂质耐量试验在妊娠期糖尿病风险预测中的价值[J]. 上海交通大学学报(医学版), 2021, 41(2): 210-216. |
| [13] | 林梁俊, 王卫娣, 王佩, 林关宁, 王振. 强迫症的表观遗传学研究进展[J]. 上海交通大学学报(医学版), 2021, 41(2): 267-272. |
| [14] | 朱雅洁, 林慧, 陈茜, 赵奕然, 刘欣梅, 黄荷凤. 妊娠期糖尿病母亲所产新生儿脐带血皮质醇水平变化及其对子代健康的影响[J]. 上海交通大学学报(医学版), 2021, 41(1): 49-54. |
| [15] | 郭彦彦,郭 飞,李 彤,李雨晨,黄荷凤,刘欣梅. 妊娠期糖尿病孕妇分娩前凝血指标的改变及其临床意义[J]. 上海交通大学学报(医学版), 2020, 40(12): 1614-1617. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
