上海交通大学学报(医学版) ›› 2021, Vol. 41 ›› Issue (9): 1261-1266.doi: 10.3969/j.issn.1674-8115.2021.09.020
• 综述 • 上一篇
收稿日期:
2020-07-16
出版日期:
2021-08-09
发布日期:
2021-08-09
通讯作者:
田英
E-mail:zhangql7989@163.com;tianmiejp@sjtu.edu.cn
作者简介:
张前龙(1979—),男,副主任技师,硕士;电子信箱:zhangql7989@163.com。
基金资助:
Qian-long ZHANG1(), Ying TIAN1,2()
Received:
2020-07-16
Online:
2021-08-09
Published:
2021-08-09
Contact:
Ying TIAN
E-mail:zhangql7989@163.com;tianmiejp@sjtu.edu.cn
Supported by:
摘要:
邻苯二甲酸酯(phthalates,PAEs)在生活中广泛存在,是一类典型的环境内分泌干扰物(environmental endocrine disruptors,EEDs)。胎盘富含激素受体,使其对EEDs高度敏感。孕期暴露于PAEs,其代谢物可以透过胎盘,通过干扰激素受体影响胎盘功能。胎盘功能障碍将导致胎儿生长受限,甚至引起胎儿死亡。孕期PAEs暴露与胎盘功能异常相关的机制包括侵润/融合、氧化应激、细胞分化/凋亡、激素分泌和脂质积累等。该文总结了孕期PAEs暴露水平概况,综述PAEs对胎盘功能的影响及相关研究进展,并探讨当前研究可能存在的局限性,为未来深入研究PAEs影响胎盘功能的分子机制提供参考。
中图分类号:
张前龙, 田英. 孕期暴露邻苯二甲酸酯对胎盘功能的影响及其机制研究进展[J]. 上海交通大学学报(医学版), 2021, 41(9): 1261-1266.
Qian-long ZHANG, Ying TIAN. Progress in the influence of prenatal exposure to phthalates on placental function and its mechanism[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(9): 1261-1266.
Country | Number | Gestational period | Metabolite of PAEs | Reference | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MMP | MEP | MnBP | MiBP | MBzP | MDEHP | MCOP | Unit | ||||
China | 3 103 | ≤14 weeks | 11.99 | 11.99 | 47.27 | 0.08 | 13.9 | µg·g-1;median | [ | ||
China | 210 | ≤12 weeks | 8.30 | 19.72 | 11.59 | 40.09 | ng·mL-1;GM | [ | |||
China | 210 | 13‒27weeks | 6.09 | 27.77 | 10.69 | 43.93 | ng·mL-1;GM | [ | |||
China | 210 | 28‒40 weeks | 4.42 | 24.67 | 9.73 | 35.13 | ng·mL-1;GM | [ | |||
Japan | 111 | 9‒40weeks | 5.7 | 7.75 | 46.6 | 3.57 | 18.5 | ng·mL-1;median | [ | ||
America | 446 | 20‒28 weeks | 1.6 | 41.1 | 9.4 | 7.1 | 5.5 | 75.5 | 20.5 | µg·g-1;GM | [ |
America | 378 | 18‒22 weeks | 1.92 | 47.0 | 13.7 | 9.57 | 9.47 | 14.01 | ng·mL-1;median | [ | |
America | 50 | ≤12 weeks,22‒24 weeks | 1.3 | 68.7 | 17.9 | 1.6 | 7.7 | 38.0 | ng·mL-1;median | [ | |
America | 596 | Progestation | 40.8 | 10.4 | 6.5 | 2.7 | 47.0 | ng·mL-1;median | [ | ||
America | 132 | 6,21 and 35 weeks | 37.7 | 10.2 | 6.3 | 2.5 | 36.1 | ng·mL-1;median | [ | ||
America | 380 | 18‒22 weeks, 24‒32 weeks | 2.2 | 46.7 | 16.3 | 10.8 | 11.9 | 92.8/(nmol·L-1) | ng·mL-1;median | [ | |
America | 168 | ≤13 weeks | 30.37 | 6.04 | 3.46 | 2.98 | 65.58 | 15.40 | ng·mL-1;GM | [ | |
America | 168 | 14‒27 weeks | 28.14 | 5.36 | 4.03 | 2.94 | 64.43 | 12.19 | ng·mL-1;GM | [ | |
America | 168 | ≥28 weeks | 28.14 | 6.98 | 5.34 | 3.31 | 69.91/(nmol·L-1) | 13.32 | ng·mL-1;GM | [ | |
America | 753 | ≤13 weeks | 28.4 | 6.36 | 3.97 | 3.31 | 71.7/(nmol·L-1) | 14.5 | ng·mL-1;GM | [ | |
Canada | 2 000 | ˂13 weeks | ND | 28.00 | 12.00 | 5.20 | 18.1 | ng·mL-1;median | [ | ||
Canada | 370 | ≤13 weeks | ND | 25.00 | 12.00 | 5.40 | 57.50/(nmol·L-1) | ng·mL-1;median | [ | ||
Netherlands | 100 | ≥20 weeks | ND | 222.0 | 62.2 | 57.1 | 11.7 | 76.9 | µg·g-1;median | [ | |
Norway | 116 | 13‒27 weeks | 55.0 | 25.0 | 20.0 | 11.0 | 66.0 | ng·mL-1;median | [ | ||
Spain | 391 | ≤12 weeks | 246.0 | 27.1 | 28.4 | 10.6 | 87.8 | µg·g-1;median | [ | ||
Spain | 391 | 28‒40 weeks | 386.0 | 28.1 | 29.8 | 10.0 | 80.0 | µg·g-1;median | [ | ||
France | 473 | 23‒29 weeks | 94.0 | 43.4 | 39.4 | 18.2 | 330.0/(nmol·L-1) | 3.86 | ng·mL-1;median | [ | |
Greece | 239 | 10‒13 weeks | 132.6 | 33.2 | 38.7 | 7.0 | 47.6 | µg·g-1;median | [ |
表1 不同国家孕妇尿液中PAEs主要代谢物的浓度
Tab 1 Concentrations of major metabolites of PAEs in pregnant women urine collected from various countries
Country | Number | Gestational period | Metabolite of PAEs | Reference | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MMP | MEP | MnBP | MiBP | MBzP | MDEHP | MCOP | Unit | ||||
China | 3 103 | ≤14 weeks | 11.99 | 11.99 | 47.27 | 0.08 | 13.9 | µg·g-1;median | [ | ||
China | 210 | ≤12 weeks | 8.30 | 19.72 | 11.59 | 40.09 | ng·mL-1;GM | [ | |||
China | 210 | 13‒27weeks | 6.09 | 27.77 | 10.69 | 43.93 | ng·mL-1;GM | [ | |||
China | 210 | 28‒40 weeks | 4.42 | 24.67 | 9.73 | 35.13 | ng·mL-1;GM | [ | |||
Japan | 111 | 9‒40weeks | 5.7 | 7.75 | 46.6 | 3.57 | 18.5 | ng·mL-1;median | [ | ||
America | 446 | 20‒28 weeks | 1.6 | 41.1 | 9.4 | 7.1 | 5.5 | 75.5 | 20.5 | µg·g-1;GM | [ |
America | 378 | 18‒22 weeks | 1.92 | 47.0 | 13.7 | 9.57 | 9.47 | 14.01 | ng·mL-1;median | [ | |
America | 50 | ≤12 weeks,22‒24 weeks | 1.3 | 68.7 | 17.9 | 1.6 | 7.7 | 38.0 | ng·mL-1;median | [ | |
America | 596 | Progestation | 40.8 | 10.4 | 6.5 | 2.7 | 47.0 | ng·mL-1;median | [ | ||
America | 132 | 6,21 and 35 weeks | 37.7 | 10.2 | 6.3 | 2.5 | 36.1 | ng·mL-1;median | [ | ||
America | 380 | 18‒22 weeks, 24‒32 weeks | 2.2 | 46.7 | 16.3 | 10.8 | 11.9 | 92.8/(nmol·L-1) | ng·mL-1;median | [ | |
America | 168 | ≤13 weeks | 30.37 | 6.04 | 3.46 | 2.98 | 65.58 | 15.40 | ng·mL-1;GM | [ | |
America | 168 | 14‒27 weeks | 28.14 | 5.36 | 4.03 | 2.94 | 64.43 | 12.19 | ng·mL-1;GM | [ | |
America | 168 | ≥28 weeks | 28.14 | 6.98 | 5.34 | 3.31 | 69.91/(nmol·L-1) | 13.32 | ng·mL-1;GM | [ | |
America | 753 | ≤13 weeks | 28.4 | 6.36 | 3.97 | 3.31 | 71.7/(nmol·L-1) | 14.5 | ng·mL-1;GM | [ | |
Canada | 2 000 | ˂13 weeks | ND | 28.00 | 12.00 | 5.20 | 18.1 | ng·mL-1;median | [ | ||
Canada | 370 | ≤13 weeks | ND | 25.00 | 12.00 | 5.40 | 57.50/(nmol·L-1) | ng·mL-1;median | [ | ||
Netherlands | 100 | ≥20 weeks | ND | 222.0 | 62.2 | 57.1 | 11.7 | 76.9 | µg·g-1;median | [ | |
Norway | 116 | 13‒27 weeks | 55.0 | 25.0 | 20.0 | 11.0 | 66.0 | ng·mL-1;median | [ | ||
Spain | 391 | ≤12 weeks | 246.0 | 27.1 | 28.4 | 10.6 | 87.8 | µg·g-1;median | [ | ||
Spain | 391 | 28‒40 weeks | 386.0 | 28.1 | 29.8 | 10.0 | 80.0 | µg·g-1;median | [ | ||
France | 473 | 23‒29 weeks | 94.0 | 43.4 | 39.4 | 18.2 | 330.0/(nmol·L-1) | 3.86 | ng·mL-1;median | [ | |
Greece | 239 | 10‒13 weeks | 132.6 | 33.2 | 38.7 | 7.0 | 47.6 | µg·g-1;median | [ |
1 | Birks L, Casas M, Garcia AM, et al. Occupational exposure to endocrine-disrupting chemicals and birth weight and length of gestation: a European meta-analysis[J]. Environ Health Perspect, 2016, 124(11): 1785-1793. |
2 | Marsit CJ. Placental epigenetics in children′s environmental health[J]. Semin Reprod Med, 2016, 34(1): 36-41. |
3 | Grindler NM, Vanderlinden L, Karthikraj R, et al. Exposure to phthalate, an endocrine disrupting chemical, alters the first trimester placental methylome and transcriptome in women[J]. Sci Rep, 2018, 8(1): 6086-6094. |
4 | Mustieles V, Mínguez-Alarcón L, Christou G, et al. Placental weight in relation to maternal and paternal preconception and prenatal urinary phthalate metabolite concentrations among subfertile couples[J]. Environ Res, 2019, 169: 272-279. |
5 | Philippat C, Heude B, Botton J, et al. Prenatal exposure to select phthalates and phenols and associations with fetal and placental weight among male births in the EDEN cohort (France)[J]. Environ Health Perspect, 2019, 127(1): 17002. |
6 | James-Todd T, Stahlhut R, Meeker JD, et al. Urinary phthalate metabolite concentrations and diabetes among women in the National Health and Nutrition Examination Survey (NHANES) 2001-2008[J]. Environ Health Perspect, 2012, 120(9): 1307-1313. |
7 | Fowden AL, Forhead AJ, Sferruzzi-Perri AN, et al. Review: endocrine regulation of placental phenotype[J]. Placenta, 2015, 36(): S50-S59. |
8 | Calafat AM, Brock JW, Silva MJ, et al. Urinary and amniotic fluid levels of phthalate monoesters in rats after the oral administration of di(2-ethylhexyl) phthalate and di-n-butyl phthalate[J]. Toxicology, 2006, 217(1): 22-30. |
9 | 吕芳, 王丽丽, 贺斌, 等. 胎盘发育及功能评价的研究进展[J]. 生殖医学杂志, 2012, 21(1): 73-77. |
10 | Marie C, Vendittelli F, Sauvant-Rochat MP. Obstetrical outcomes and biomarkers to assess exposure to phthalates: a review[J]. Environ Int, 2015, 83: 116-136. |
11 | Guo Y, Kannan K. A survey of phthalates and parabens in personal care products from the United States and its implications for human exposure[J]. Environ Sci Technol, 2013, 47(24): 14442-14449. |
12 | He X, Zang JJ, Liao P, alet, Distribution and dietary predictors of urinary phthalate metabolites among pregnant women in Shanghai, China[J]. Int J Environ Res Public Health, 2019, 16(8): 1366-1377. |
13 | Kumar AR, Sivaperumal P. Analytical methods for the determination of biomarkers of exposure to phthalates in human urine samples[J]. Trends Analyt Chem, 2016, 75:151-161. |
14 | 黄超囡, 李云, 彭俊钰, 等.人体邻苯二甲酸酯暴露的尿液生物标志物分析方法[J]. 色谱, 2019, 37(8): 815-823. |
15 | Hines EP, Calafat AM, Silva MJ, et al. Concentrations of phthalate metabolites in milk, urine, saliva, and serum of lactating North Carolina women[J]. Environ Health Perspect, 2009, 117(1): 86-92. |
16 | Gao H, Xu YY, Huang K, et al. Cumulative risk assessment of phthalates associated with birth outcomes in pregnant Chinese women: a prospective cohort study[J]. Environ Pollut, 2017, 222: 549-556. |
17 | Suzuki Y, Yoshinaga J, Mizumoto Y, et al. Foetal exposure to phthalate esters and anogenital distance in male newborns[J]. Int J Androl, 2012, 35(3): 236-244. |
18 | Polinski KJ, Dabelea D, Hamman RF, et al. Distribution and predictors of urinary concentrations of phthalate metabolites and phenols among pregnant women in the Healthy Start Study[J]. Environ Res, 2018, 162: 308-317. |
19 | Wenzel AG, Brock JW, Cruze L, et al. Prevalence and predictors of phthalate exposure in pregnant women in Charleston, SC[J]. Chemosphere, 2018, 193: 394-402. |
20 | Buckley JP, Palmieri RT, Matuszewski JM, et al. Consumer product exposures associated with urinary phthalate levels in pregnant women[J]. J Expo Sci Environ Epidemiol, 2012, 22(5): 468-475. |
21 | Wenzel AG, Bloom MS, Butts CD, et al. Influence of race on prenatal phthalate exposure and anogenital measurements among boys and girls[J]. Environ Int, 2018, 110: 61-70. |
22 | Martino-Andrade AJ, Liu F, Sathyanarayana S, et al. Timing of prenatal phthalate exposure in relation to genital endpoints in male newborns[J]. Andrology, 2016, 4(4): 585-593. |
23 | Swan SH, Sathyanarayana S, Barrett ES, et al. First trimester phthalate exposure and anogenital distance in newborns[J]. Hum Reprod, 2015, 30(4): 963-972. |
24 | Arbuckle TE, Davis K, Marro L, et al. Phthalate and bisphenol A exposure among pregnant women in Canada: results from the MIREC study[J]. Environ Int, 2014, 68: 55-65. |
25 | Arbuckle TE, Agarwal A, MacPherson SH, et al. Prenatal exposure to phthalates and phenols and infant endocrine-sensitive outcomes: the MIREC study[J]. Environ Int, 2018, 120: 572-583. |
26 | Ye X, Pierik FH, Hauser R, et al. Urinary metabolite concentrations of organophosphorous pesticides, bisphenol A, and phthalates among pregnant women in Rotterdam, the Netherlands: the Generation R study[J]. Environ Res, 2008, 108(2): 260-267. |
27 | Sabaredzovic A, Sakhi AK, Brantsæter AL, et al. Determination of 12 urinary phthalate metabolites in Norwegian pregnant women by core-shell high performance liquid chromatography with on-line solid-phase extraction, column switching and tandem mass spectrometry[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2015, 1002: 343-352. |
28 | Valvi D, Monfort N, Ventura R, et al. Variability and predictors of urinary phthalate metabolites in Spanish pregnant women[J]. Int J Hyg Environ Health, 2015, 218(2): 220-231. |
29 | Myridakis A, Fthenou E, Balaska E, et al. Phthalate esters, parabens and bisphenol-A exposure among mothers and their children in Greece (Rhea cohort)[J]. Environ Int, 2015, 83: 1-10. |
30 | Gingrich J, Ticiani E, Veiga-Lopez A. Placenta disrupted: endocrine disrupting chemicals and pregnancy[J]. Trends Endocrinol Metab, 2020, 31(7): 508-524. |
31 | Mayhew TM. Villous trophoblast of human placenta: a coherent view of its turnover, repair and contributions to villous development and maturation[J]. Histol Histopathol, 2001, 16(4): 1213-1224. |
32 | Redman CW, Sargent IL. Microparticles and immunomodulation in pregnancy and pre-eclampsia[J]. J Reprod Immunol, 2007, 76(1/2): 61-67. |
33 | Shamshirsaz AA, Fox KA, Erfani H, et al. Coagulopathy in surgical management of placenta accreta spectrum[J]. Eur J Obstet Gynecol Reprod Biol, 2019, 237: 126-130. |
34 | Wu F, Tian FJ, Lin Y. Oxidative stress in placenta: health and diseases[J]. Biomed Res Int, 2015, 2015: 293271. |
35 | Whigham CA, MacDonald TM, Walker SP, et al. The untapped potential of placenta-enriched molecules for diagnostic and therapeutic development[J]. Placenta, 2019, 84: 28-31. |
36 | Zhao Y, Shi HJ, Xie CM, et al. Prenatal phthalate exposure, infant growth, and global DNA methylation of human placenta[J]. Environ Mol Mutagen, 2015, 56(3): 286-292. |
37 | Adibi JJ, Whyatt RM, Hauser R, et al. Transcriptional biomarkers of steroidogenesis and trophoblast differentiation in the placenta in relation to prenatal phthalate exposure[J]. Environ Health Perspect, 2010, 118(2): 291-296. |
38 | Machtinger R, Zhong J, Mansur A, et al. Placental lncRNA expression is associated with prenatal phthalate exposure[J]. Toxicol Sci, 2018, 163(1): 116-122. |
39 | Ferguson KK, McElrath TF, Ko YA, et al. Variability in urinary phthalate metabolite levels across pregnancy and sensitive windows of exposure for the risk of preterm birth[J]. Environ Int, 2014, 70: 118-124. |
40 | Zong T, Lai L, Hu J, et al. Maternal exposure to di-(2-ethylhexyl) phthalate disrupts placental growth and development in pregnant mice[J]. J Hazard Mater, 2015, 297: 25-33. |
41 | Shen R, Zhao LL, Yu Z, et al. Maternal di-(2-ethylhexyl) phthalate exposure during pregnancy causes fetal growth restriction in a stage-specific but gender-independent manner[J]. Reprod Toxicol, 2017, 67: 117-124. |
42 | Gao F, Hu W, Li Y, et al. Mono-2-ethylhexyl phthalate inhibits human extravillous trophoblast invasion via the PPARγ pathway[J]. Toxicol Appl Pharmacol, 2017, 327: 23-29. |
43 | Xu Y, Knipp GT, Cook TJ. Effects of di-(2-ethylhexyl)-phthalate and its metabolites on the lipid profiling in rat HRP-1 trophoblast cells[J]. Arch Toxicol, 2006, 80(5): 293-298. |
44 | Myatt L, Cui X. Oxidative stress in the placenta[J]. Histochem Cell Biol, 2004, 122(4): 369-382. |
45 | van T Erve TJ, Rosen EM, Barrett ES, et al. Phthalates and phthalate alternatives have diverse associations with oxidative stress and inflammation in pregnant women[J]. Environ Sci Technol, 2019, 53(6): 3258-3267. |
46 | Tetz LM, Cheng AA, Korte CS, et al. Mono-2-ethylhexyl phthalate induces oxidative stress responses in human placental cells in vitro[J]. Toxicol Appl Pharmacol, 2013, 268(1): 47-54. |
47 | Shoaito H, Petit J, Chissey A, et al. The role of peroxisome proliferator-activated receptor γ (PPARγ) in mono (2-ethylhexyl) phthalate (MEHP)-mediated cytotrophoblast differentiation[J]. Environ Health Perspect, 2019, 127(2): 27003-27017. |
48 | Lim W, Yang C, Bazer FW, et al. Chrysophanol induces apoptosis of choriocarcinoma through regulation of ROS and the AKT and ERK1/2 pathways[J]. J Cell Physiol, 2017, 232(2): 331-339. |
49 | Meruvu S, Zhang J, Choudhury M. Mono-(2-ethylhexyl) phthalate increases oxidative stress responsive miRNAs in first trimester placental cell line HTR8/SVneo[J]. Chem Res Toxicol, 2016, 29(3): 430-435. |
50 | Ahbab MA, Güven C, Koçkaya EA, et al. Comparative developmental toxicity evaluation of di-n-hexyl phthalate and dicyclohexyl phthalate in rats[J]. Toxicol Ind Health, 2017, 33(9): 696-716. |
51 | Xu Y, Agrawal S, Cook TJ, et al. Maternal di-(2-ethylhexyl)-phthalate exposure influences essential fatty acid homeostasis in rat placenta[J]. Placenta, 2008, 29(11): 962-969. |
52 | Pidoux G, Gerbaud P, Marpeau O, et al. Human placental development is impaired by abnormal human chorionic gonadotropin signaling in trisomy 21 pregnancies[J]. Endocrinology, 2007, 148(11): 5403-5413. |
53 | Wang XK, Agarwal M, Parobchak N, et al. Mono-(2-ethylhexyl) phthalate promotes pro-labor gene expression in the human placenta[J]. PLoS One, 2016, 11(1): e0147013. |
54 | Petit J, Wakx A, Gil S, et al. Lipidome-wide disturbances of human placental JEG-3 cells by the presence of MEHP[J]. Biochimie, 2018, 149: 1-8. |
55 | Desoye G, Gauster M, Wadsack C. Placental transport in pregnancy pathologies[J]. Am J Clin Nutr, 2011, 94(6): 1896S-1902S. |
56 | Menjoge AR, Rinderknecht AL, Navath RS, et al. Transfer of PAMAM dendrimers across human placenta: prospects of its use as drug carrier during pregnancy[J]. J Control Release, 2011, 150(3): 326-338. |
57 | Bailey-Hytholt CM, Shen TL, Nie B, et al. Placental trophoblast-inspired lipid bilayers for cell-free investigation of molecular interactions[J]. ACS Appl Mater Interfaces, 2020, 12(28): 31099-31111. |
58 | Koch HM, Drexler H, Angerer J. An estimation of the daily intake of di (2-ethylhexyl) phthalate (DEHP) and other phthalates in the general population[J]. Int J Hyg Environ Health, 2003, 206(2): 77-83. |
[1] | 唐宁,欧阳凤秀. 生命早期环境内分泌干扰物暴露与儿童过敏性疾病关系的研究进展[J]. 上海交通大学学报(医学版), 2019, 39(9): 1100-. |
[2] | 程淑群,张志浩,夏茵茵. 壬基苯酚雌性生殖毒性的研究进展[J]. 上海交通大学学报(医学版), 2014, 34(4): 562-. |
[3] | 孙婉婉, 毕宇芳. 双酚A与胰岛素抵抗及2型糖尿病关系的研究进展[J]. , 2012, 32(5): 670-. |
[4] | 梁 辰, 何晓雯, 谢 欣, 等. 十溴联苯醚孕期暴露对雌性子代大鼠生殖发育的影响[J]. , 2012, 32(11): 1461-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||