1 |
Stiermaier T, Backhaus SJ, Lange T, et al. Cardiac magnetic resonance left ventricular mechanical uniformity alterations for risk assessment after acute myocardial infarction[J]. J Am Heart Assoc, 2019, 8(16): e011576.
|
2 |
Xu Y, He S, Li W, et al. Quantitative mechanical dyssynchrony in dilated cardiomyopathy measured by deformable registration algorithm[J]. Eur Radiol, 2020, 30(4): 2010-2020.
|
3 |
Schäfer M, Collins KK, Browne LP, et al. Effect of electrical dyssynchrony on left and right ventricular mechanics in children with pulmonary arterial hypertension[J]. J Heart Lung Transplant, 2018, 37(7): 870-878.
|
4 |
Steinmetz M, Usenbenz S, Kowallick JT, et al. Left ventricular synchrony, torsion, and recoil mechanics in Ebstein's anomaly: insights from cardiovascular magnetic resonance[J]. J Cardiovasc Magn Reson, 2017, 19(1): 101.
|
5 |
Chen J, Garcia EV, Folks RD, et al. Onset of left ventricular mechanical contraction as determined by phase analysis of ECG-gated myocardial perfusion SPECT imaging: development of a diagnostic tool for assessment of cardiac mechanical dyssynchrony[J]. J Nucl Cardiol, 2005, 12(6): 687-695.
|
6 |
Suever JD, Hartlage GR, Magrath RP, et al. Relationship between mechanical dyssynchrony and intra-operative electrical delay times in patients undergoing cardiac resynchronization therapy[J]. J Cardiovasc Magn Reson, 2014, 16: 4.
|
7 |
Zhang F, Yang W, Wang Y, et al. Is there an association between hibernating myocardium and left ventricular mechanical dyssynchrony in patients with myocardial infarction?[J]. Hell J Nucl Med, 2018, 21(1): 28-34.
|
8 |
Richardson WJ, Clarke SA, Quinn TA, et al. Physiological implications of myocardial scar structure[J]. Compr Physiol, 2015, 5(4): 1877-1909.
|
9 |
Zajac J, Eriksson J, Alehagen U, et al. Mechanical dyssynchrony alters left ventricular flow energetics in failing hearts with LBBB: a 4D flow CMR pilot study[J]. Int J Cardiovasc Imaging, 2018, 34(4): 587-596.
|
10 |
Voigt JU, Cvijic M. 2- and 3-dimensional myocardial strain in cardiac health and disease[J]. JACC Cardiovasc Imaging, 2019, 12(9): 1849-1863.
|
11 |
van Berlo JH, Maillet M, Molkentin JD. Signaling effectors underlying pathologic growth and remodeling of the heart[J]. J Clin Invest, 2013, 123(1): 37-45.
|
12 |
van Oosterhout MF, Prinzen FW, Arts T, et al. Asynchronous electrical activation induces asymmetrical hypertrophy of the left ventricular wall[J]. Circulation, 1998, 98(6): 588-595.
|
13 |
Chang SA, Chang HJ, Choi SI, et al. Usefulness of left ventricular dyssynchrony after acute myocardial infarction, assessed by a tagging magnetic resonance image derived metric, as a determinant of ventricular remodeling[J]. Am J Cardiol, 2009, 104(1): 19-23.
|
14 |
Obokata M, Nagata Y, Wu VC, et al. Direct comparison of cardiac magnetic resonance feature tracking and 2D/3D echocardiography speckle tracking for evaluation of global left ventricular strain[J]. Eur Heart J Cardiovasc Imaging, 2016, 17(5): 525-532.
|
15 |
Claus P, Omar AMS, Pedrizzetti G, et al. Tissue tracking technology for assessing cardiac mechanics: principles, normal values, and clinical applications[J]. JACC Cardiovasc Imaging, 2015, 8(12): 1444-1460.
|
16 |
Onishi T, Saha SK, Ludwig DR, et al. Feature tracking measurement of dyssynchrony from cardiovascular magnetic resonance cine acquisitions: comparison with echocardiographic speckle tracking[J]. J Cardiovasc Magn Reson, 2013, 15: 95.
|
17 |
Khan JN, Singh A, Nazir SA, et al. Comparison of cardiovascular magnetic resonance feature tracking and tagging for the assessment of left ventricular systolic strain in acute myocardial infarction[J]. Eur J Radiol, 2015, 84(5): 840-848.
|
18 |
Backhaus SJ, Metschies G, Zieschang V, et al. Head-to-head comparison of cardiovascular MR feature tracking cine versus acquisition-based deformation strain imaging using myocardial tagging and strain encoding[J]. Magn Reson Med, 2021, 85(1): 357-368.
|
19 |
Taylor RJ, Umar F, Moody WE, et al. Feature-tracking cardiovascular magnetic resonance as a novel technique for the assessment of mechanical dyssynchrony[J]. Int J Cardiol, 2014, 175(1): 120-125.
|
20 |
Leclercq C, Faris O, Tunin R, et al. Systolic improvement and mechanical resynchronization does not require electrical synchrony in the dilated failing heart with left bundle-branch block[J]. Circulation, 2002, 106(14): 1760-1763.
|
21 |
Kowallick JT, Morton G, Lamata P, et al. Quantitative assessment of left ventricular mechanical dyssynchrony using cine cardiovascular magnetic resonance imaging: inter-study reproducibility[J]. JRSM Cardiovasc Dis, 2017, 6: 2048004017710142.
|
22 |
Tournoux F, Donal E, Leclercq C, et al. Concordance between mechanical and electrical dyssynchrony in heart failure patients: a function of the underlying cardiomyopathy?[J]. J Cardiovasc Electrophysiol, 2007, 18(10): 1022-1027.
|
23 |
Ghio S, Constantin C, Klersy C, et al. Interventricular and intraventricular dyssynchrony are common in heart failure patients, regardless of QRS duration[J]. Eur Heart J, 2004, 25(7): 571-578.
|
24 |
Zhou Y, He Z, Liao S, et al. Prognostic value of integrative analysis of electrical and mechanical dyssynchrony in patients with acute heart failure[J]. J Nucl Cardiol, 2021, 28(1): 140-149.
|
25 |
Yamada S, Arrell DK, Kane GC, et al. Mechanical dyssynchrony precedes QRS widening in ATP-sensitive K⁺ channel-deficient dilated cardiomyopathy[J]. J Am Heart Assoc, 2013, 2(6): e000410.
|
26 |
Chung ES, Leon AR, Tavazzi L, et al. Results of the predictors of response to CRT (PROSPECT) trial[J]. Circulation, 2008, 117(20): 2608-2616.
|
27 |
Bilchick KC, Kuruvilla S, Hamirani YS, et al. Impact of mechanical activation, scar, and electrical timing on cardiac resynchronization therapy response and clinical outcomes[J]. J Am Coll Cardiol, 2014, 63(16): 1657-1666.
|
28 |
Auger D, Bleeker GB, Bertini M, et al. Effect of cardiac resynchronization therapy in patients without left intraventricular dyssynchrony[J]. Eur Heart J, 2012, 33(7): 913-920.
|
29 |
Ruschitzka F, Abraham WT, Singh JP, et al. Cardiac-resynchronization therapy in heart failure with a narrow QRS complex[J]. N Engl J Med, 2013, 369(15): 1395-1405.
|
30 |
Jackson T, Amraoui S, Sohal M, et al. The interaction of QRS duration with cardiac magnetic resonance derived scar and mechanical dyssynchrony in systolic heart failure: implications for cardiac resynchronization therapy[J]. Int J Cardiol Heart Vasc, 2018, 18: 81-85.
|
31 |
Wong JA, Yee R, Stirrat J, et al. Influence of pacing site characteristics on response to cardiac resynchronization therapy[J]. Circ Cardiovasc Imaging, 2013, 6(4): 542-550.
|
32 |
Shin SH, Hung CL, Uno H, et al. Mechanical dyssynchrony after myocardial infarction in patients with left ventricular dysfunction, heart failure, or both[J]. Circulation. 2010, 121(9): 1096-1103.
|
33 |
Antoni ML, Boden H, Hoogslag GE, et al. Prevalence of dyssynchrony and relation with long-term outcome in patients after acute myocardial infarction[J]. Am J Cardiol, 2011, 108(12): 1689-1696.
|
34 |
Noringriis I, Modin D, Pedersen SH, et al. Prognostic importance of mechanical dyssynchrony in predicting heart failure development after ST-segment elevation myocardial infarction[J]. Int J Cardiovasc Imaging, 2019, 35(1): 87-97.
|
35 |
Manka R, Kozerke S, Rutz AK, et al. A CMR study of the effects of tissue edema and necrosis on left ventricular dyssynchrony in acute myocardial infarction: implications for cardiac resynchronization therapy[J]. J Cardiovasc Magn Reson, 2012, 14: 47.
|
36 |
Sharma RK, Volpe G, Rosen BD, et al. Prognostic implications of left ventricular dyssynchrony for major adverse cardiovascular events in asymptomatic women and men: the Multi-Ethnic Study of Atherosclerosis[J]. J Am Heart Assoc, 2014, 3(4): e000975.
|
37 |
Schäfer M, Barker AJ, Morgan GJ, et al. Increased systolic vorticity in the left ventricular outflow tract is associated with abnormal aortic flow formations in tetralogy of Fallot[J]. Int J Cardiovasc Imaging, 2020, 36(4): 691-700.
|
38 |
Kalaitzidis P, Orwat S, Kempny A, et al. Biventricular dyssynchrony on cardiac magnetic resonance imaging and its correlation with myocardial deformation, ventricular function and objective exercise capacity in patients with repaired tetralogy of Fallot[J]. Int J Cardiol, 2018, 264: 53-57.
|
39 |
Jing L, Wehner GJ, Suever JD, et al. Left and right ventricular dyssynchrony and strains from cardiovascular magnetic resonance feature tracking do not predict deterioration of ventricular function in patients with repaired tetralogy of Fallot[J]. J Cardiovasc Magn Reson, 2016, 18(1): 49.
|
40 |
Ruijsink B, Puyol-Anton E, Oksuz I, et al. Fully automated, quality-controlled cardiac analysis from CMR: validation and large-scale application to characterize cardiac function[J]. JACC Cardiovasc Imaging, 2020, 13(3): 684-695.
|
41 |
Bai WJ, Sinclair M, Tarroni G, et al. Automated cardiovascular magnetic resonance image analysis with fully convolutional networks[J]. J Cardiovasc Magn Reson, 2018, 20(1): 65.
|
42 |
Wang Z. Robust and automatic diagnosis of the intraventricular mechanical dyssynchrony for the left ventricle in cardiac magnetic resonance images[J]. Int J Comput Assist Radiol Surg, 2017, 12(9): 1471-1480.
|