1 |
GOLDRING S R, GOLDRING M B. Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage-bone crosstalk[J]. Nat Rev Rheumatol, 2016, 12(11): 632-644.
|
2 |
LEE W Y W, WANG B. Cartilage repair by mesenchymal stem cells: clinical trial update and perspectives[J]. J Orthop Translat, 2017, 9: 76-88.
|
3 |
WU C L, Harasymowicz N S, Klimak M A, et al. The role of macrophages in osteoarthritis and cartilage repair [J]. Osteoarthr Cartil, 2020, 28(5):544-554.
|
4 |
MAKRIS E A, GOMOLL A H, MALIZOS K N, et al. Repair and tissue engineering techniques for articular cartilage[J]. Nat Rev Rheumatol, 2015, 11(1): 21-34.
|
5 |
CHOY E. Understanding the dynamics: pathways involved in the pathogenesis of rheumatoid arthritis[J]. Rheumatology (Oxford), 2012, 51(Suppl 5): v3-v11.
|
6 |
CALABRESE L H, ROSE-JOHN S. IL-6 biology: implications for clinical targeting in rheumatic disease[J]. Nat Rev Rheumatol, 2014, 10(12): 720-727.
|
7 |
FIRESTEIN G S. Evolving concepts of rheumatoid arthritis[J]. Nature, 2003, 423(6937): 356-361.
|
8 |
MCINNES I B, SCHETT G. Cytokines in the pathogenesis of rheumatoid arthritis[J]. Nat Rev Immunol, 2007, 7(6): 429-442.
|
9 |
DINARELLO C A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases[J]. Blood, 2011, 117(14): 3720-3732.
|
10 |
TONG W X, GENG Y Y, HUANG Y, et al. In vivo identification and induction of articular cartilage stem cells by inhibiting NF-κB signaling in osteoarthritis[J]. Stem Cells, 2015, 33(10): 3125-3137.
|
11 |
PHAM L V, ZHOU H J, LIN-LEE Y C, et al. Nuclear tumor necrosis factor receptor-associated factor 6 in lymphoid cells negatively regulates c-Myb-mediated transactivation through small ubiquitin-related modifier-1 modification[J]. J Biol Chem, 2008, 283(8): 5081-5089.
|
12 |
LAPPAS M. The IL-1β signalling pathway and its role in regulating pro-inflammatory and pro-labour mediators in human primary myometrial cells[J]. Reprod Biol, 2017, 17(4): 333-340.
|
13 |
BRENKE J K, POPOWICZ G M, SCHORPP K, et al. Targeting TRAF6 E3 ligase activity with a small-molecule inhibitor combats autoimmunity[J]. J Biol Chem, 2018, 293(34): 13191-13203.
|
14 |
CAO Z, XIONG J, TAKEUCHI M, et al. TRAF6 is a signal transducer for interleukin-1[J]. Nature, 1996, 383(6599): 443-446.
|
15 |
ZHU L J, YANG T C, WU Q, et al. Tumor necrosis factor receptor-associated factor (TRAF) 6 inhibition mitigates the pro-inflammatory roles and proliferation of rheumatoid arthritis fibroblast-like synoviocytes[J]. Cytokine, 2017, 93: 26-33.
|
16 |
ZHONG J H, LI J, LIU C F, et al. Effects of microRNA-146a on the proliferation and apoptosis of human osteoarthritis chondrocytes by targeting TRAF6 through the NF-κB signalling pathway[J]. Biosci Rep, 2017, 37(2): BSR20160578.
|
17 |
DAI K R, ZHANG X L, SHI Q, et al. Gene therapy of arthritis and orthopaedic disorders: current experimental approaches in China and in Canada[J]. Expert Opin Biol Ther, 2008, 8(9): 1337-1346.
|
18 |
JEONG J H, MOK H, OH Y K, et al. siRNA conjugate delivery systems[J]. Bioconjug Chem, 2009, 20(1): 5-14.
|
19 |
LUNGWITZ U, BREUNIG M, BLUNK T, et al. Polyethylenimine-based non-viral gene delivery systems[J]. Eur J Pharm Biopharm, 2005, 60(2): 247-266.
|
20 |
XIANG S N, SU J, TONG H J, et al. Biscarbamate cross-linked low molecular weight PEI for delivering IL-1 receptor antagonist gene to synoviocytes for arthritis therapy[J]. Biomaterials, 2012, 33(27): 6520-6532.
|
21 |
ULLAH I, ZHAO J, RUKH S, et al. A PEG-b-poly(disulfide-l-lysine) based redox-responsive cationic polymer for efficient gene transfection[J]. J Mater Chem B, 2019, 7(11): 1893-1905.
|
22 |
ULLAH I, ZHAO J, SU B, et al. Redox stimulus disulfide conjugated polyethyleneimine as a shuttle for gene transfer[J]. J Mater Sci Mater Med, 2020, 31(12): 118.
|
23 |
GOSSELIN M A, GUO W, LEE R J. Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine[J]. Bioconjug Chem, 2001, 12(6): 989-994.
|
24 |
KATRI A, DĄBROWSKA A, LÖFVALL H, et al. A dual amylin and calcitonin receptor agonist inhibits pain behavior and reduces cartilage pathology in an osteoarthritis rat model[J]. Osteoarthr Cartil, 2019, 27(9): 1339-1346.
|
25 |
ZHU H, GUO Z K, JIANG X X, et al. A protocol for isolation and culture of mesenchymal stem cells from mouse compact bone[J]. Nat Protoc, 2010, 5(3): 550-560.
|
26 |
ELGHANAM G A, LIU Y N, KHALILI S, et al. Compact bone-derived multipotent mesenchymal stromal cells (MSCs) for the treatment of sjogren's-like disease in NOD mice[J]. Methods Mol Biol, 2017, 1553: 25-39.
|
27 |
ZHAO J J, OUYANG Q Q, HU Z Y, et al. A protocol for the culture and isolation of murine synovial fibroblasts[J]. Biomed Rep, 2016, 5(2): 171-175.
|
28 |
LIN Z M, MIAO J N, ZHANG T, et al. JUNB-FBXO21-ERK axis promotes cartilage degeneration in osteoarthritis by inhibiting autophagy[J]. Aging Cell, 2021, 20(2): e13306.
|
29 |
CHEN D, SHEN J, ZHAO W W, et al. Osteoarthritis: toward a comprehensive understanding of pathological mechanism[J]. Bone Res, 2017, 5: 16044.
|
30 |
JIANG Y. Osteoarthritis year in review 2021: biology[J]. Osteoarthr Cartil, 2022, 30(2): 207-215.
|
31 |
MIN Y, KIM M J, LEE S N, et al. Inhibition of TRAF6 ubiquitin-ligase activity by PRDX1 leads to inhibition of NFKB activation and autophagy activation[J]. Autophagy, 2018, 14(8): 1347-1358.
|
32 |
RAI M F, PAN H, YAN H M, et al. Applications of RNA interference in the treatment of arthritis[J]. Transl Res, 2019, 214: 1-16.
|
33 |
APPARAILLY F, JORGENSEN C. siRNA-based therapeutic approaches for rheumatic diseases[J]. Nat Rev Rheumatol, 2013, 9(1): 56-62.
|
34 |
HUNTER A C. Molecular hurdles in polyfectin design and mechanistic background to polycation induced cytotoxicity[J]. Adv Drug Deliv Rev, 2006, 58(14): 1523-1531.
|
35 |
BITON J, SEMERANO L, DELAVALLÉE L, et al. Interplay between TNF and regulatory T cells in a TNF-driven murine model of arthritis[J]. J Immunol, 2011, 186(7): 3899-3910.
|
36 |
STONE A, GROL M W, RUAN M Z C, et al. Combinatorial Prg4 and il-1ra gene therapy protects against hyperalgesia and cartilage degeneration in post-traumatic osteoarthritis[J]. Hum Gene Ther, 2019, 30(2): 225-235.
|
37 |
BARTOK B, FIRESTEIN G S. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis[J]. Immunol Rev, 2010, 233(1): 233-255.
|