1 |
SANTIAGO J, SILVA J V, HOWL J, et al. All you need to know about sperm RNAs[J]. Hum Reprod Update, 2021, 28(1): 67-91.
|
2 |
GAO H H, WEN H, CAO C C, et al. Overexpression of microRNA-10a in germ cells causes male infertility by targeting Rad51 in mouse and human[J]. Front Physiol, 2019, 10: 765.
|
3 |
CHEN X X, ZHENG Y, LEI A M, et al. Early cleavage of preimplantation embryos is regulated by tRNAGln-TTG-derived small RNAs present in mature spermatozoa[J]. J Biol Chem, 2020, 295(32): 10885-10900.
|
4 |
TYEBJI S, HANNAN A J, TONKIN C J. Pathogenic infection in male mice changes sperm small RNA profiles and transgenerationally alters offspring behavior[J]. Cell Rep, 2020, 31(4): 107573.
|
5 |
SHARMA U. Paternal contributions to offspring health: role of sperm small RNAs in intergenerational transmission of epigenetic information[J]. Front Cell Dev Biol, 2019, 7: 215.
|
6 |
VIGODNER M. Roles of small ubiquitin-related modifiers in male reproductive function[J]. Int Rev Cell Mol Biol, 2011, 288: 227-259.
|
7 |
OKURA T, GONG L, KAMITANI T, et al. Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin[J]. J Immunol, 1996, 157(10): 4277-4281.
|
8 |
WILSON V G. SUMO Regulation of Cellular Processes[M]. 2nd ed. Switzerland: Springer, 2017.
|
9 |
VIGODNER M. Sumoylation precedes accumulation of phosphorylated H2AX on sex chromosomes during their meiotic inactivation[J]. Chromosome Res, 2009, 17(1): 37-45.
|
10 |
FEITOSA W B, MORRIS P L. SUMOylation regulates germinal vesicle breakdown and the Akt/PKB pathway during mouse oocyte maturation[J]. Am J Physiol Cell Physiol, 2018, 315(1): C115-C121.
|
11 |
DEL PRIORE L, PIGOZZI M I. DNA organization along pachytene chromosome axes and its relationship with crossover frequencies[J]. Int J Mol Sci, 2021, 22(5): 2414.
|
12 |
SONG S H, CHIBA K, RAMASAMY R, et al. Recent advances in the genetics of testicular failure[J]. Asian J Androl, 2016, 18(3): 350-355.
|
13 |
GRAY S, COHEN P E. Control of meiotic crossovers: from double-strand break formation to designation[J]. Annu Rev Genet, 2016, 50: 175-210.
|
14 |
SHRIVASTAVA V, PEKAR M, GROSSER E, et al. SUMO proteins are involved in the stress response during spermatogenesis and are localized to DNA double-strand breaks in germ cells[J]. Reproduction, 2010, 139(6): 999-1010.
|
15 |
CHANG H M, YEH E T H. SUMO: from bench to bedside[J]. Physiol Rev, 2020, 100(4): 1599-1619.
|
16 |
RAO H P, QIAO H Y, BHATT S K, et al. A SUMO-ubiquitin relay recruits proteasomes to chromosome axes to regulate meiotic recombination[J]. Science, 2016, 355: 403-407.
|
17 |
VIGODNER M, ISHIKAWA T, SCHLEGEL P N, et al. SUMO-1, human male germ cell development, and the androgen receptor in the testis of men with normal and abnormal spermatogenesis[J]. Am J Physiol Endocrinol Metab, 2006, 290(5): E1022-E1033.
|
18 |
PANICKER N, GE P, DAWSON V L, et al. The cell biology of Parkinson's disease[J]. J Cell Biol, 2021, 220(4): e202012095.
|
19 |
RICHARD M A, SOK P, CANON S, et al. Altered mechanisms of genital development identified through integration of DNA methylation and genomic measures in hypospadias[J]. Sci Rep, 2020, 10(1): 12715.
|
20 |
SENGUPTA A, NANDA M, TARIQ S B, et al. Sumoylation and its regulation in testicular Sertoli cells[J]. Biochem Biophys Res Commun, 2021, 580: 56-62.
|
21 |
SEELER J S, DEJEAN A. Nuclear and unclear functions of SUMO[J]. Nat Rev Mol Cell Biol, 2003, 4(9): 690-699.
|
22 |
BROWN P W, HWANG K, SCHLEGEL P N, et al. Small ubiquitin-related modifier (SUMO)-1, SUMO-2/3 and SUMOylation are involved with centromeric heterochromatin of chromosomes 9 and 1 and proteins of the synaptonemal complex during meiosis in men[J]. Hum Reprod, 2008, 23(12): 2850-2857.
|
23 |
YANG W L, ROBICHAUX W G 3rd, MEI F C, et al. Epac1 activation by cAMP regulates cellular SUMOylation and promotes the formation of biomolecular condensates[J]. Sci Adv, 2022, 8(16): eabm2960.
|
24 |
SHRIVASTAVA V, MARMOR H, CHERNYAK S, et al. Cigarette smoke affects posttranslational modifications and inhibits capacitation-induced changes in human sperm proteins[J]. Reprod Toxicol, 2014, 43: 125-129.
|
25 |
VIGODNER M, SHRIVASTAVA V, GUTSTEIN L E, et al. Localization and identification of sumoylated proteins in human sperm: excessive sumoylation is a marker of defective spermatozoa[J]. Hum Reprod, 2013, 28(1): 210-223.
|
26 |
GONG L, KAMITANI T, FUJISE K, et al. Preferential interaction of sentrin with a ubiquitin-conjugating enzyme, Ubc9[J]. J Biol Chem, 1997, 272(45): 28198-28201.
|
27 |
LA SALLE S, SUN F Y, ZHANG X D, et al. Developmental control of sumoylation pathway proteins in mouse male germ cells[J]. Dev Biol, 2008, 321(1): 227-237.
|
28 |
VIGODNER M, LUCAS B, KEMENY S, et al. Identification of sumoylated targets in proliferating mouse spermatogonia and human testicular seminomas[J]. Asian J Androl, 2020, 22(6): 569-577.
|
29 |
NACERDDINE K, LEHEMBRE F, BHAUMIK M, et al. The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice[J]. Dev Cell, 2005, 9(6): 769-779.
|
30 |
MAGALHAES J, TRESSE E, EJLERSKOV P, et al. PIAS2-mediated blockade of IFN-β signaling: a basis for sporadic Parkinson disease dementia[J]. Mol Psychiatry, 2021, 26(10): 6083-6099.
|
31 |
BEGITT A, CAVEY J, DROESCHER M, et al. On the role of STAT1 and STAT6 ADP-ribosylation in the regulation of macrophage activation[J]. Nat Commun, 2018, 9(1): 2144.
|
32 |
PAAKINAHO V, LEMPIÄINEN J K, SIGISMONDO G, et al. SUMOylation regulates the protein network and chromatin accessibility at glucocorticoid receptor-binding sites[J]. Nucleic Acids Res, 2021, 49(4): 1951-1971.
|
33 |
WANG R H, HUANG S F, FU X N, et al. The conserved ancient role of chordate PIAS as a multilevel repressor of the NF-κB pathway[J]. Sci Rep, 2017, 7(1): 17063.
|
34 |
YAN W, SANTTI H, JÄNNE O A, et al. Expression of the E3 SUMO-1 ligases PIASx and PIAS1 during spermatogenesis in the rat[J]. Gene Expr Patterns, 2003, 3(3): 301-308.
|
35 |
SANTTI H, MIKKONEN L, ANAND A, et al. Disruption of the murine PIASx gene results in reduced testis weight[J]. J Mol Endocrinol, 2005, 34(3): 645-654.
|
36 |
SAJEEV T K, JOSHI G, ARYA P, et al. SUMO and SUMOylation pathway at the forefront of host immune response[J]. Front Cell Dev Biol, 2021, 9: 681057.
|
37 |
WEN S M, NIU Y J, HUANG H J. Posttranslational regulation of androgen dependent and independent androgen receptor activities in prostate cancer[J]. Asian J Urol, 2020, 7(3): 203-218.
|
38 |
TAKAHASHI M, INAGUMA Y, HIAI H, et al. Developmentally regulated expression of a human "finger"-containing gene encoded by the 5' half of the ret transforming gene[J]. Mol Cell Biol, 1988, 8(4): 1853-1856.
|
39 |
ZHUANG X J, TANG W H, FENG X, et al. Trim27 interacts with Slx2, is associated with meiotic processes during spermatogenesis[J]. Cell Cycle, 2016, 15(19): 2576-2584.
|
40 |
MATSUURA T, SHIMONO Y, KAWAI K M, et al. PIAS proteins are involved in the SUMO-1 modification, intracellular translocation and transcriptional repressive activity of RET finger protein[J]. Exp Cell Res, 2005, 308(1): 65-77.
|
41 |
LONG X J, ZHAO B Y, LU W B, et al. The critical roles of the SUMO-specific protease SENP3 in human diseases and clinical implications[J]. Front Physiol, 2020, 11: 558220.
|
42 |
JANSEN N S, VERTEGAAL A C O. A chain of events: regulating target proteins by SUMO polymers[J]. Trends Biochem Sci, 2021, 46(2): 113-123.
|
43 |
HAN Z J, FENG Y H, GU B H, et al. The post-translational modification, SUMOylation, and cancer (Review)[J]. Int J Oncol, 2018, 52(4): 1081-1094.
|
44 |
KUNZ K, PILLER T, MÜLLER S. SUMO-specific proteases and isopeptidases of the SENP family at a glance[J]. J Cell Sci, 2018, 131(6): jcs211904.
|
45 |
DEYRIEUX A F, WILSON V G. Sumoylation in development and differentiation[J]. Adv Exp Med Biol, 2017, 963: 197-214.
|
46 |
WU D, HUANG C J, KHAN F A, et al. SENP3 grants tight junction integrity and cytoskeleton architecture in mouse Sertoli cells[J]. Oncotarget, 2017, 8(35): 58430-58442.
|
47 |
MRUK D D, CHENG C Y. The mammalian blood-testis barrier: its biology and regulation[J]. Endocr Rev, 2015, 36(5): 564-591.
|