1 |
ACKERMANN M, VERLEDEN S E, KUEHNEL M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in covid-19[J]. N Engl J Med, 2020, 383(2): 120-128.
|
2 |
VARGA Z, FLAMMER A J, STEIGER P, et al. Endothelial cell infection and endotheliitis in COVID-19[J]. Lancet, 2020, 395(10234): 1417-1418.
|
3 |
JANEWAY C A Jr, MEDZHITOV R. Innate immune recognition[J]. Annu Rev Immunol, 2002, 20: 197-216.
|
4 |
WANG T, TOWN T, ALEXOPOULOU L, et al. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis[J]. Nat Med, 2004, 10(12): 1366-1373.
|
5 |
GITLIN L, BARCHET W, GILFILLAN S, et al. Essential role of mda-5 in type Ⅰ IFN responses to polyriboinosinic: polyribocytidylic acid and encephalomyocarditis picornavirus[J]. Proc Natl Acad Sci USA, 2006, 103(22): 8459-8464.
|
6 |
TRAYNOR T R, MAJDE J A, BOHNET S G, et al. Intratracheal double-stranded RNA plus interferon-gamma: a model for analysis of the acute phase response to respiratory viral infections[J]. Life Sci, 2004, 74(20): 2563-2576.
|
7 |
YU P, ZHANG X, LIU N, et al. Pyroptosis: mechanisms and diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 128.
|
8 |
KOVACS S B, MIAO E A. Gasdermins: effectors of pyroptosis[J]. Trends Cell Biol, 2017, 27(9): 673-684.
|
9 |
ZHAO N, DI B, XU L L. The NLRP3 inflammasome and COVID-19: activation, pathogenesis and therapeutic strategies[J]. Cytokine Growth Factor Rev, 2021, 61: 2-15.
|
10 |
BAI B C, YANG Y Y, WANG Q, et al. NLRP3 inflammasome in endothelial dysfunction[J]. Cell Death Dis, 2020, 11(9): 776.
|
11 |
BAUERNFRIED S, SCHERR M J, PICHLMAIR A, et al. Human NLRP1 is a sensor for double-stranded RNA[J]. Science, 2021, 371(6528): eabd0811.
|
12 |
SCHREZENMEIER E, DÖRNER T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology[J]. Nat Rev Rheumatol, 2020, 16(3): 155-166.
|
13 |
HUANG L Y, STUART C, TAKEDA K, et al. Poly(I: c) induces human lung endothelial barrier dysfunction by disrupting tight junction expression of claudin-5[J]. PLoS One, 2016, 11(8): e0160875.
|
14 |
LUNDBERG A M, DREXLER S K, MONACO C, et al. Key differences in TLR3/poly I: c signaling and cytokine induction by human primary cells: a phenomenon absent from murine cell systems[J]. Blood, 2007, 110(9): 3245-3252.
|
15 |
朱莹莹, 张姣姣, 孙俊楠, 等. 氯喹对脂多糖诱导的Ⅱ型肺泡细胞损伤的影响[J]. 内科理论与实践, 2021, 16(3): 197-201.
|
|
ZHU Y Y, ZHANG J J, SUN J N, et al. Effect of chloroquine on type Ⅱ alveolar cell injury caused by lipopolysaccharide[J]. J Int Med Concepts Pract, 2021,16: 197-201.
|
16 |
王宁, 朱莹莹, 张姣姣, 等. 氯喹对脂多糖诱导的人脐静脉内皮细胞损伤的影响[J]. 内科理论与实践, 2020, 15(2): 111-115.
|
|
WANG N, ZHU Y Y, ZHANG J J, et al. The dose dependent bidirectional effect of chloroquine on lipopolysaccharide-induced injury to human umbilical vein endothelial cells[J]. J Int Med Concepts Pract, 2020, 15(2): 111-115.
|
17 |
国家卫生健康委员会, 国家中医药管理局. 新型冠状病毒肺炎诊疗方案(试行第八版)[J]. 中国病毒病杂志, 2020, 10(5): 321-328.
|
|
National Health Commission, National Administration of Traditional Chinese Medicine. Guidelines for the diagnosis and treatment of coronavirus disease 2019 (trial version eighth)[J]. Chin J Viral Dis, 2020,10(5): 321-328.
|
18 |
WU L Q, DAI J P, ZHAO X F, et al. Chloroquine enhances replication of influenza A virus A/WSN/33 (H1N1) in dose-, time-, and MOI-dependent manners in human lung epithelial cells A549[J]. J Med Virol, 2015, 87(7): 1096-1103.
|
19 |
SATO R, IMAIZUMI T, AIZAWA T, et al. Inhibitory effect of anti-malarial agents on the expression of proinflammatory chemokines via Toll-like receptor 3 signaling in human glomerular endothelial cells[J]. Ren Fail, 2021, 43(1): 643-650.
|
20 |
CARTER W A, DE CLERCQ E. Viral infection and host defense[J]. Science, 1974, 186(4170): 1172-1178.
|
21 |
MAJDE J A. Viral double-stranded RNA, cytokines, and the flu[J]. J Interferon Cytokine Res, 2000, 20(3): 259-272.
|
22 |
SHIBAMIYA A, HERSEMEYER K, SCHMIDT WÖLL T, et al. A key role for Toll-like receptor-3 in disrupting the hemostasis balance on endothelial cells[J]. Blood, 2009, 113(3): 714-722.
|
23 |
MIAN M F, AHMED A N, RAD M, et al. Length of dsRNA (poly I: C) drives distinct innate immune responses, depending on the cell type[J]. J Leukoc Biol, 2013, 94(5): 1025-1036.
|
24 |
HÄCKER H, MISCHAK H, MIETHKE T, et al. CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation[J]. EMBO J, 1998, 17(21): 6230-6240.
|