1 |
FORTINI M E. Introduction: Notch in development and disease[J]. Semin Cell Dev Biol, 2012, 23(4): 419-420.
|
2 |
SIEBEL C, LENDAHL U. Notch signaling in development, tissue homeostasis, and disease[J]. Physiol Rev, 2017, 97(4): 1235-1294.
|
3 |
YU J, CANALIS E. Notch and the regulation of osteoclast differentiation and function[J]. Bone, 2020, 138: 115474.
|
4 |
SHAYA O, BINSHTOK U, HERSCH M, et al. Cell-cell contact area affects Notch signaling and Notch-dependent patterning[J]. Dev Cell, 2017, 40(5): 505-511.e6.
|
5 |
KOPAN R, ILAGAN M X G. The canonical Notch signaling pathway: unfolding the activation mechanism[J]. Cell, 2009, 137(2): 216-233.
|
6 |
LI L, TANG P, LI S, et al. Notch signaling pathway networks in cancer metastasis: a new target for cancer therapy[J]. Med Oncol, 2017, 34(10): 180.
|
7 |
FAYYAZ S, ATTAR R, XU B J, et al. Realizing the potential of blueberry as natural inhibitor of metastasis and powerful apoptosis inducer: tapping the treasure trove for effective regulation of cell signaling pathways[J]. Anticancer Agents Med Chem, 2020, 20(15): 1780-1786.
|
8 |
EINHORN T A, GERSTENFELD L C. Fracture healing: mechanisms and interventions[J]. Nat Rev Rheumatol, 2015, 11(1): 45-54.
|
9 |
ONO T, TAKAYANAGI H. Osteoimmunology in bone fracture healing[J]. Curr Osteoporos Rep, 2017, 15(4): 367-375.
|
10 |
DISHOWITZ M I, MUTYABA P L, TAKACS J D, et al. Systemic inhibition of canonical Notch signaling results in sustained callus inflammation and alters multiple phases of fracture healing[J]. PLoS One, 2013, 8(7): e68726.
|
11 |
NOVAK S, ROEDER E, SINDER B P, et al. Modulation of Notch1 signaling regulates bone fracture healing[J]. J Orthop Res, 2020, 38(11): 2350-2361.
|
12 |
WU A C, RAGGATT L J, ALEXANDER K A, et al. Unraveling macrophage contributions to bone repair[J]. Bonekey Rep, 2013, 2: 373.
|
13 |
LOI F, CÓRDOVA L A, PAJARINEN J, et al. Inflammation, fracture and bone repair[J]. Bone, 2016, 86: 119-130.
|
14 |
KEEWAN E, NASER S A. The role of Notch signaling in macrophages during inflammation and infection: implication in rheumatoid arthritis?[J]. Cells, 2020, 9(1): 111.
|
15 |
HILTON M J, TU X L, WU X M, et al. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation[J]. Nat Med, 2008, 14(3): 306-314.
|
16 |
ZHANG Q H, WANG C M, LIU Z L, et al. Notch signal suppresses toll-like receptor-triggered inflammatory responses in macrophages by inhibiting extracellular signal-regulated kinase 1/2-mediated nuclear factor κB activation[J]. J Biol Chem, 2012, 287(9): 6208-6217.
|
17 |
HALL S R R, JIANG Y J, LEARY E, et al. Identification and isolation of small CD44-negative mesenchymal stem/progenitor cells from human bone marrow using elutriation and polychromatic flow cytometry[J]. Stem Cells Transl Med, 2013, 2(8): 567-578.
|
18 |
SONG K, HUANG M Q, SHI Q, et al. Cultivation and identification of rat bone marrow-derived mesenchymal stem cells[J]. Mol Med Rep, 2014, 10(2): 755-760.
|
19 |
GU Q L, CAI Y, HUANG C, et al. Curcumin increases rat mesenchymal stem cell osteoblast differentiation but inhibits adipocyte differentiation[J]. Pharmacogn Mag, 2012, 8(31): 202-208.
|
20 |
SHAO J, ZHANG W W, YANG T Y. Using mesenchymal stem cells as a therapy for bone regeneration and repairing[J]. Biol Res, 2015, 48(1): 62.
|
21 |
DISHOWITZ M I, TERKHORN S P, BOSTIC S A, et al. Notch signaling components are upregulated during both endochondral and intramembranous bone regeneration[J]. J Orthop Res, 2012, 30(2): 296-303.
|
22 |
MATTHEWS B G, GRCEVIC D, WANG L P, et al. Analysis of αSMA-labeled progenitor cell commitment identifies Notch signaling as an important pathway in fracture healing[J]. J Bone Miner Res, 2014, 29(5): 1283-1294.
|
23 |
WANG C, INZANA J A, MIRANDO A J, et al. NOTCH signaling in skeletal progenitors is critical for fracture repair[J]. J Clin Invest, 2016, 126(4): 1471-1481.
|
24 |
MUGURUMA Y, HOZUMI K, WARITA H, et al. Maintenance of bone homeostasis by DLL1-mediated Notch signaling[J]. J Cell Physiol, 2017, 232(9): 2569-2580.
|
25 |
SEMENOVA D, BOGDANOVA M, KOSTINA A, et al. Dose-dependent mechanism of Notch action in promoting osteogenic differentiation of mesenchymal stem cells[J]. Cell Tissue Res, 2020, 379(1): 169-179.
|
26 |
ZANOTTI S, CANALIS E. Notch1 and Notch2 expression in osteoblast precursors regulates femoral microarchitecture[J]. Bone, 2014, 62: 22-28.
|
27 |
ZANOTTI S, SMERDEL-RAMOYA A, STADMEYER L, et al. Notch inhibits osteoblast differentiation and causes osteopenia[J]. Endocrinology, 2008, 149(8): 3890-3899.
|
28 |
UGARTE F, RYSER M, THIEME S, et al. Notch signaling enhances osteogenic differentiation while inhibiting adipogenesis in primary human bone marrow stromal cells[J]. Exp Hematol, 2009, 37(7): 867-875.e1.
|
29 |
JI Y T, KE Y X, GAO S. Intermittent activation of Notch signaling promotes bone formation[J]. Am J Transl Res, 2017, 9(6): 2933-2944.
|
30 |
ZHAO B H, GRIMES S N, LI S S, et al. TNF-induced osteoclastogenesis and inflammatory bone resorption are inhibited by transcription factor RBP-J[J]. J Exp Med, 2012, 209(2): 319-334.
|
31 |
CANALIS E, SCHILLING L, YEE S P, et al. Hajdu Cheney mouse mutants exhibit osteopenia, increased osteoclastogenesis, and bone resorption[J]. J Biol Chem, 2016, 291(4): 1538-1551.
|
32 |
GOEL P N, MOHARRER Y, HEBB J H, et al. Suppression of Notch signaling in osteoclasts improves bone regeneration and healing[J]. J Orthop Res, 2019, 37(10): 2089-2103.
|
33 |
BENEDITO R, ROCA C, SÖRENSEN I, et al. The Notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis[J]. Cell, 2009, 137(6): 1124-1135.
|
34 |
SAHARA M, HANSSON E M, WERNET O, et al. Manipulation of a VEGF-Notch signaling circuit drives formation of functional vascular endothelial progenitors from human pluripotent stem cells[J]. Cell Res, 2015, 25(1): 148.
|
35 |
ZHANG B, PU W T. Notching up vascular regeneration[J]. Cell Res, 2014, 24(7): 777-778.
|
36 |
KUSUMBE A P, RAMASAMY S K, ADAMS R H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone[J]. Nature, 2014, 507(7492): 323-328.
|
37 |
RAMASAMY S K, KUSUMBE A P, WANG L, et al. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone[J]. Nature, 2014, 507(7492): 376-380.
|
38 |
YANG M, LI C J, SUN X, et al. MiR-497~195 cluster regulates angiogenesis during coupling with osteogenesis by maintaining endothelial Notch and HIF-1α activity[J]. Nat Commun, 2017, 8: 16003.
|
39 |
ZANOTTI S, CANALIS E. Notch signaling and the skeleton[J]. Endocr Rev, 2016, 37(3): 223-253.
|
40 |
XU R, YALLOWITZ A, QIN A, et al. Targeting skeletal endothelium to ameliorate bone loss[J]. Nat Med, 2018, 24(6): 823-833.
|
41 |
ZHU Y, RUAN Z, LIN Z Y, et al. The association between CD31hiEmcnhi endothelial cells and bone mineral density in Chinese women[J]. J Bone Miner Metab, 2019, 37(6): 987-995.
|
42 |
WANG L, ZHOU F, ZHANG P, et al. Human type H vessels are a sensitive biomarker of bone mass[J]. Cell Death Dis, 2017, 8(5): e2760.
|
43 |
SHAO J, ZHOU Y H, LIN J Y, et al. Notch expressed by osteocytes plays a critical role in mineralisation[J]. J Mol Med, 2018, 96(3): 333-347.
|
44 |
PFLANZ D, BIRKHOLD A I, ALBIOL L, et al. Sost deficiency led to a greater cortical bone formation response to mechanical loading and altered gene expression[J]. Sci Rep, 2017, 7(1): 9435.
|
45 |
ZIOUTI F, EBERT R, RUMMLER M, et al. NOTCH signaling is activated through mechanical strain in human bone marrow-derived mesenchymal stromal cells[J]. Stem Cells Int, 2019, 2019: 5150634.
|
46 |
MANOKAWINCHOKE J, PAVASANT P, OSATHANON T. Intermittent compressive stress regulates Notch target gene expression via transforming growth factor-β signaling in murine pre-osteoblast cell line[J]. Arch Oral Biol, 2017, 82: 47-54.
|
47 |
NIEDERMAIR T, STRAUB R H, BROCHHAUSEN C, et al. Impact of the sensory and sympathetic nervous system on fracture healing in ovariectomized mice[J]. Int J Mol Sci, 2020, 21(2): 405.
|
48 |
MIYATA S. Cytoskeletal signal-regulated oligodendrocyte myelination and remyelination[J]. Adv Exp Med Biol, 2019, 1190: 33-42.
|
49 |
ARTHUR-FARRAJ P, WANEK K, HANTKE J, et al. Mouse schwann cells need both NRG1 and cyclic AMP to myelinate[J]. Glia, 2011, 59(5): 720-733.
|
50 |
WANG J, REN K Y, WANG Y H, et al. Effect of active Notch signaling system on the early repair of rat sciatic nerve injury[J]. Artif Cells Nanomed Biotechnol, 2015, 43(6): 383-389.
|
51 |
ZANOTTI S, CANALIS E. Parathyroid hormone inhibits Notch signaling in osteoblasts and osteocytes[J]. Bone, 2017, 103: 159-167.
|
52 |
ZANOTTI S, YU J, ADHIKARI S, et al. Glucocorticoids inhibit Notch target gene expression in osteoblasts[J]. J Cell Biochem, 2018, 119(7): 6016-6023.
|
53 |
KAMIŃSKA A, MAREK S, PARDYAK L, et al. Crosstalk between androgen-ZIP9 signaling and Notch pathway in rodent Sertoli cells[J]. Int J Mol Sci, 2020, 21(21): 8275.
|