上海交通大学学报(医学版) ›› 2023, Vol. 43 ›› Issue (12): 1569-1576.doi: 10.3969/j.issn.1674-8115.2023.12.013
• 综述 • 上一篇
收稿日期:
2023-06-07
接受日期:
2023-11-30
出版日期:
2023-12-28
发布日期:
2024-02-01
通讯作者:
刘敏
E-mail:czixuan2023@126.com;lm4104@shtrhospital.com
作者简介:
陈子旋(1999—),男,傣族,硕士生;电子信箱:czixuan2023@126.com。
基金资助:
CHEN Zixuan(), LI Dong, LIU Min()
Received:
2023-06-07
Accepted:
2023-11-30
Online:
2023-12-28
Published:
2024-02-01
Contact:
LIU Min
E-mail:czixuan2023@126.com;lm4104@shtrhospital.com
Supported by:
摘要:
细胞焦亡是一种新的细胞程序性死亡方式,主要表现为细胞持续肿胀至破裂,进而释放出大量的炎症因子引起炎症反应。良性前列腺增生(benign prostatic hyperplasia,BPH)是老年男性最常发生的泌尿系统疾病,与激素变化和炎症反应密切相关。近年来,细胞焦亡在BPH的发生、发展中的作用引起了人们的关注。该文总结了细胞焦亡的机制,归纳了老年男性BPH的发病机制,并概述了细胞焦亡在BPH中的作用,以期为通过细胞焦亡寻找对BPH更有效的治疗措施提供新的思路。
中图分类号:
陈子旋, 李东, 刘敏. 细胞焦亡在老年男性良性前列腺增生中的作用综述[J]. 上海交通大学学报(医学版), 2023, 43(12): 1569-1576.
CHEN Zixuan, LI Dong, LIU Min. Review of the role of pyroptosis in benign prostatic hyperplasia in old males[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(12): 1569-1576.
图1 炎症在老年男性BPH发病机制中的作用Note: EMT—epithelial-mesenchymal transition; TGF-β—transforming growth factor-β; TNF—tumor necrosis factor.
Fig 1 Role of inflammation in the pathogenesis of BPH in old males
1 | 张皓博, 赵宇楠, 杨学军. 细胞焦亡在椎间盘退变中的作用及治疗意义[J]. 中国组织工程研究, 2022, 26(9): 1445-1451. |
ZHANG H B, ZHAO Y N, YANG X J. Role and therapeutic implications of pyroptosis in intervertebral disc degeneration[J]. Chinese Journal of Tissue Engineering Research, 2022, 26(9): 1445-1451. | |
2 | ZHENG X T, CHEN W W, GONG F C, et al. The role and mechanism of pyroptosis and potential therapeutic targets in Sepsis: a review[J]. Front Immunol, 2021, 12: 711939. |
3 | NAIYILA X, LI J Z, HUANG Y, et al. A novel insight into the immune-related interaction of inflammatory cytokines in benign prostatic hyperplasia[J]. J Clin Med, 2023, 12(5): 1821. |
4 | TRIPATHI U, MISRA A, TCHKONIA T, et al. Impact of senescent cell subtypes on tissue dysfunction and repair: importance and research questions[J]. Mech Ageing Dev, 2021, 198: 111548. |
5 | 李泽安, 谢俊佳, 陈君秀, 等. 微环境与良性前列腺增生发病机制的研究进展[J]. 中华泌尿外科杂志, 2022, 43(9): 717-720. |
LI Z A, XIE J J, CHEN J X, et al. Role of microenvironment in the pathogenesis of benign prostatic hyperplasia[J]. Chinese Journal of Urology, 2022, 43(9): 717-720. | |
6 | ZHAO M, GUO J, GAO Q H, et al. Relationship between pyroptosis-mediated inflammation and the pathogenesis of prostate disease[J]. Front Med (Lausanne), 2023, 10: 1084129. |
7 | TANG R, XU J, ZHANG B, et al. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity[J]. J Hematol Oncol, 2020, 13(1): 110. |
8 | LI L S, JIANG M X, QI L, et al. Pyroptosis, a new bridge to tumor immunity[J]. Cancer Sci, 2021, 112(10): 3979-3994. |
9 | 郑小雁, 王星云, 张拥军. 抑制肺泡上皮细胞焦亡对支气管肺发育不良新生大鼠肺泡化阻滞的改善作用[J]. 上海交通大学学报(医学版), 2023, 43(2): 171-179. |
ZHENG X Y, WANG X Y, ZHANG Y J. Improvement of alveolarization arrest in newborn rats with bronchopulmonary dysplasia via inhibiting alveolar epithelial cell pyroptosis[J]. Journal of Shanghai Jiao tong University:Medical Science, 2023, 43(2): 171-179. | |
10 | WEI X, XIE F, ZHOU X X, et al. Role of pyroptosis in inflammation and cancer[J]. Cell Mol Immunol, 2022, 19(9): 971-992. |
11 | RAO Z P, ZHU Y T, YANG P, et al. Pyroptosis in inflammatory diseases and cancer[J]. Theranostics, 2022, 12(9): 4310-4329. |
12 | HSU S K, LI C Y, LIN I L, et al. Inflammation-related pyroptosis, a novel programmed cell death pathway, and its crosstalk with immune therapy in cancer treatment[J]. Theranostics, 2021, 11(18): 8813-8835. |
13 | HU Z H, CHAI J J. Assembly and architecture of NLR resistosomes and inflammasomes[J]. Annu Rev Biophys, 2023, 52: 207-228. |
14 | MA Q. Pharmacological inhibition of the NLRP3 inflammasome: structure, molecular activation, and inhibitor-NLRP3 interaction[J]. Pharmacol Rev, 2023, 75(3): 487-520. |
15 | WEI Y N, YANG L, PANDEYA A, et al. Pyroptosis-induced inflammation and tissue damage[J]. J Mol Biol, 2022, 434(4): 167301. |
16 | YU P, ZHANG X, LIU N, et al. Pyroptosis: mechanisms and diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 128. |
17 | WANG Y P, GAO W Q, SHI X Y, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin[J]. Nature, 2017, 547(7661): 99-103. |
18 | ZHOU Z W, HE H B, WANG K, et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells[J]. Science, 2020, 368(6494): eaaz7548. |
19 | SARRIÓ D, MARTÍNEZ-VAL J, MOLINA-CRESPO Á, et al. The multifaceted roles of gasdermins in cancer biology and oncologic therapies[J]. Biochim Biophys Acta Rev Cancer, 2021, 1876(2): 188635. |
20 | OLTRA S S, COLOMO S, SIN L, et al. Distinct GSDMB protein isoforms and protease cleavage processes differentially control pyroptotic cell death and mitochondrial damage in cancer cells[J]. Cell Death Differ, 2023, 30(5): 1366-1381. |
21 | JIN B R, KIM H J, NA J H, et al. Targeting benign prostate hyperplasia treatments: AR/TGF-β/NOX4 inhibition by apocynin suppresses inflammation and proliferation[J]. J Adv Res, 2023: S2090-S1232(23)00112-1. |
22 | TONG Y, ZHOU R Y. Review of the roles and interaction of androgen and inflammation in benign prostatic hyperplasia[J]. Mediators Inflamm, 2020, 2020: 7958316. |
23 | HONG G L, KIM K H, KIM Y J, et al. Decreased mitophagy aggravates benign prostatic hyperplasia in aged mice through DRP1 and estrogen receptor α[J]. Life Sci, 2022, 309: 120980. |
24 | CANNARELLA R, CONDORELLI R A, BARBAGALLO F, et al. Endocrinology of the aging prostate: current concepts[J]. Front Endocrinol (Lausanne), 2021, 12: 554078. |
25 | AHEARN T U, PEISCH S, PETTERSSON A, et al. Expression of IGF/insulin receptor in prostate cancer tissue and progression to lethal disease[J]. Carcinogenesis, 2018, 39(12): 1431-1437. |
26 | CAO D H, SUN R N, PENG L, et al. Immune cell proinflammatory microenvironment and androgen-related metabolic regulation during benign prostatic hyperplasia in aging[J]. Front Immunol, 2022, 13: 842008. |
27 | BIRCH J, GIL J. Senescence and the SASP: many therapeutic avenues[J]. Genes Dev, 2020, 34(23/24): 1565-1576. |
28 | FIARD G, STAVRINIDES V, CHAMBERS E S, et al. Cellular senescence as a possible link between prostate diseases of the ageing male[J]. Nat Rev Urol, 2021, 18(10): 597-610. |
29 | LÓPEZ-OTÍN C, BLASCO M A, PARTRIDGE L, et al. Hallmarks of aging: an expanding universe[J]. Cell, 2023, 186(2): 243-278. |
30 | CAO Y, ZHANG H, TU G L, et al. The symptoms of benign prostatic hyperplasia patients with stromal-dominated hyperplasia nodules may be associated with prostate fibrosis[J]. Int J Gen Med, 2023, 16: 1181-1191. |
31 | ROYUELA M, DE MIGUEL M P, BETHENCOURT F R, et al. Transforming growth factor beta 1 and its receptor types Ⅰ and Ⅱ. Comparison in human normal prostate, benign prostatic hyperplasia, and prostatic carcinoma[J]. Growth Factors, 1998, 16(2): 101-110. |
32 | VICKMAN R E, AARON-BROOKS L, ZHANG R Y, et al. TNF is a potential therapeutic target to suppress prostatic inflammation and hyperplasia in autoimmune disease[J]. Nat Commun, 2022, 13(1): 2133. |
33 | ALONSO-MAGDALENA P, BRÖSSNER C, REINER A, et al. A role for epithelial-mesenchymal transition in the etiology of benign prostatic hyperplasia[J]. Proc Natl Acad Sci USA, 2009, 106(8): 2859-2863. |
34 | LI Q, HONG Y F, CHEN J, et al. Hypoxia-induced HIF-1α expression promotes neurogenic bladder fibrosis via EMT and pyroptosis[J]. Cells, 2022, 11(23): 3836. |
35 | WANG Z, ZHANG Y C, ZHAO C, et al. The miR-223-3p/MAP1B axis aggravates TGF-β-induced proliferation and migration of BPH-1 cells[J]. Cell Signal, 2021, 84: 110004. |
36 | JIA C Q, ZHANG Z Q, TANG J, et al. Epithelial-mesenchymal transition induces GSDME transcriptional activation for inflammatory pyroptosis[J]. Front Cell Dev Biol, 2021, 9: 781365. |
37 | BOSTWICK D G, EGEVAD L. Prostatic stromal proliferations: a review[J]. Pathology, 2021, 53(1): 12-25. |
38 | ZHANG C, ZHAI T Y, ZHU J H, et al. Research progress of antioxidants in oxidative stress therapy after spinal cord injury[J]. Neurochem Res, 2023, 48(12): 3473-3484. |
39 | MIAO C Y, ZHAO Y, CHEN Y, et al. Investigation of He's Yang Chao recipe against oxidative stress-related mitophagy and pyroptosis to improve ovarian function[J]. Front Endocrinol (Lausanne), 2023, 14: 1077315. |
40 | ZHANG C Y, LIN T J, NIE G H, et al. Cadmium and molybdenum co-induce pyroptosis via ROS/PTEN/PI3K/AKT axis in duck renal tubular epithelial cells[J]. Environ Pollut, 2021, 272: 116403. |
41 | REBELO A P, EIDHOF I, CINTRA V P, et al. Biallelic loss-of-function variations in PRDX3 cause cerebellar ataxia[J]. Brain, 2021, 144(5): 1467-1481. |
42 | JIANG M Y, HAN Z D, LI W J, et al. Mitochondrion-associated protein peroxiredoxin 3 promotes benign prostatic hyperplasia through autophagy suppression and pyroptosis activation[J]. Oncotarget, 2017, 8(46): 80295-80302. |
43 | QUAN Y, XIN Y G, TIAN G E, et al. Mitochondrial ROS-modulated mtDNA: a potential target for cardiac aging[J]. Oxid Med Cell Longev, 2020, 2020: 9423593. |
44 | CHEN W F, HUANG X Q, PENG A X, et al. Kangquan recipe regulates the expression of BAMBI protein via the TGF- β/Smad signaling pathway to inhibit benign prostatic hyperplasia in rats[J]. Evid Based Complement Alternat Med, 2019, 2019: 6281819. |
45 | FUSCO F, CRETA M, DE NUNZIO C, et al. Progressive bladder remodeling due to bladder outlet obstruction: a systematic review of morphological and molecular evidences in humans[J]. BMC Urol, 2018, 18(1): 15. |
46 | WANG K, CHEN L, YANG J, et al. Urethral meatus stricture BOO stimulates bladder smooth muscle cell proliferation and pyroptosis via IL‑1β and the SGK1‑NFAT2 signaling pathway[J]. Mol Med Rep, 2020, 22(1): 219-226. |
47 | KUSTRIMOVIC N, BOMBELLI R, BACI D, et al. Microbiome and prostate cancer: a novel target for prevention and treatment[J]. Int J Mol Sci, 2023, 24(2): 1511. |
48 | BERTHELOOT D, LATZ E, FRANKLIN B S. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death[J]. Cell Mol Immunol, 2021, 18(5): 1106-1121. |
[1] | 朱思宇, 董晓艳. 哮喘儿童小气道功能障碍的再认识[J]. 上海交通大学学报(医学版), 2023, 43(4): 500-506. |
[2] | 吴昭瑜, 许之珏, 蒲蕻吉, 王新, 陆信武. 神经损伤诱导蛋白1的生理功能及其在相关疾病中的作用[J]. 上海交通大学学报(医学版), 2023, 43(3): 358-364. |
[3] | 谢莎莎, 吕叶辉, 林涧. 四面体框架核酸在医学领域的应用与研究进展[J]. 上海交通大学学报(医学版), 2023, 43(3): 380-384. |
[4] | 郑小雁, 王星云, 张拥军. 抑制肺泡上皮细胞焦亡对支气管肺发育不良新生大鼠肺泡化阻滞的改善作用[J]. 上海交通大学学报(医学版), 2023, 43(2): 171-179. |
[5] | 过丽强, 赵世天, 舒冰. Notch信号通路在骨折愈合过程中作用的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(2): 222-229. |
[6] | 吴振恺, 邓博, 潘瑜, 丁峰. 酰基羧酸水解酶在疾病中的作用及机制研究进展[J]. 上海交通大学学报(医学版), 2023, 43(1): 101-107. |
[7] | 杨文倩, 陈迟琪, 赵路, 曹力元, 夏一秋, 卢智刚, 郑俊克. 免疫抑制性受体LILRB2促进新型冠状病毒刺突蛋白介导的炎症过程[J]. 上海交通大学学报(医学版), 2022, 42(9): 1188-1196. |
[8] | 阿婷曦, 邵春益, 傅瑶. 调节性T细胞在眼表疾病中作用的研究进展[J]. 上海交通大学学报(医学版), 2022, 42(8): 1145-1150. |
[9] | 冯宝怡, 董庭婷, 郑晓飞, 陶永, 吴皓. 不同月龄C57BL/6J小鼠耳蜗线粒体和NAD+水平比较[J]. 上海交通大学学报(医学版), 2022, 42(8): 980-986. |
[10] | 张琳程, 钟华. 结节病的发病机制与临床治疗研究进展[J]. 上海交通大学学报(医学版), 2022, 42(7): 931-938. |
[11] | 雷海桃, 田雪梅, 金芳全. 细胞因子信号转导抑制因子与类风湿关节炎的相关性研究进展[J]. 上海交通大学学报(医学版), 2022, 42(7): 945-951. |
[12] | 戴芹, 王伟铭. IgA肾病细胞模型中的炎症表达及丙戊酸钠的抗炎作用[J]. 上海交通大学学报(医学版), 2022, 42(6): 751-757. |
[13] | 张桓瑜, 江旖婷, 朱晓晨, 何智妍, 周薇, 宋忠臣. 牙龈素提取物对小鼠脑神经炎症的影响[J]. 上海交通大学学报(医学版), 2022, 42(5): 570-577. |
[14] | 康文慧, 陈仪婷, 赵安达, 李荣, 李生慧. 褪黑素在哮喘发病和病程中的作用机制研究进展[J]. 上海交通大学学报(医学版), 2022, 42(5): 667-672. |
[15] | 李博文, 刘宁宁, 王慧. 肠道微生物组在炎症性肠病发病机制和治疗中的作用研究进展[J]. 上海交通大学学报(医学版), 2022, 42(3): 364-368. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||