
上海交通大学学报(医学版) ›› 2025, Vol. 45 ›› Issue (5): 646-652.doi: 10.3969/j.issn.1674-8115.2025.05.014
收稿日期:2025-01-03
接受日期:2025-02-26
出版日期:2025-05-28
发布日期:2025-05-19
通讯作者:
尹雅芙,主任医师,博士;电子信箱:yinyf-2001@163.com。作者简介:曹明明(1999—),女,硕士生;电子信箱:doctorcmm@163.com。
CAO Mingming, WANG Hui, YIN Yafu(
)
Received:2025-01-03
Accepted:2025-02-26
Online:2025-05-28
Published:2025-05-19
Contact:
YIN Yafu, E-mail: yinyf-2001@163.com.摘要:
帕金森病作为全球第二大常见的神经退行性疾病,发病率出现逐年上升趋势,严重影响罹患该病的老年人及其家属的生活质量。认知功能障碍及帕金森病痴呆的发生是帕金森病病情进展的关键里程碑事件。而影像学检查作为神经退行性疾病重要的筛查及评估手段,在帕金森病相关研究中已得到一定程度的应用。不同的影像检查技术在帕金森病认知功能障碍的筛查方面具有不同的优势和特点。选择合适的影像学检查方法,不仅能最大程度地利用其优势,提高识别具有认知功能障碍风险的帕金森病患者的敏感度和特异度,还能减少患者的检查频次和受辐射剂量,降低患者的心理负担,提高依从性,有利于改善患者的生存质量及预后。该文从结构影像、功能影像和其他影像技术3个方面总结了帕金森病认知功能障碍相关的影像学标志物,并对未来的研究方向进行了相关探讨,旨在为帕金森病的临床诊疗提供更有力的影像学支持。
中图分类号:
曹明明, 王辉, 尹雅芙. 帕金森病认知功能障碍影像标志物的研究现状[J]. 上海交通大学学报(医学版), 2025, 45(5): 646-652.
CAO Mingming, WANG Hui, YIN Yafu. Current research status of imaging markers for cognitive impairment in Parkinson′s disease[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(5): 646-652.
| 1 | WEINTRAUB D, CASPELL-GARCIA C, SIMUNI T, et al. Neuropsychiatric symptoms and cognitive abilities over the initial quinquennium of Parkinson disease[J]. Ann Clin Transl Neurol, 2020, 7(4): 449-461. |
| 2 | PIGOTT J S, DAVIES N, CHESTERMAN E, et al. Delivering optimal care to people with cognitive impairment in Parkinson′s disease: a qualitative study of patient, caregiver, and professional perspectives[J]. Parkinsons Dis, 2023, 2023: 9732217. |
| 3 | NIU J Q, ZHONG Y, JIN C T, et al. Positron emission tomography imaging of synaptic dysfunction in Parkinson′s disease[J]. Neurosci Bull, 2024, 40(6): 743-758. |
| 4 | JOHAR I, MOLLENHAUER B, AARSLAND D. Cerebrospinal fluid biomarkers of cognitive decline in Parkinson′s disease[J]. Int Rev Neurobiol, 2017, 132: 275-294. |
| 5 | FILIPPI M, CANU E, DONZUSO G, et al. Tracking cortical changes throughout cognitive decline in Parkinson′s disease[J]. Mov Disord, 2020, 35(11): 1987-1998. |
| 6 | SARASSO E, AGOSTA F, PIRAMIDE N, et al. Progression of grey and white matter brain damage in Parkinson′s disease: a critical review of structural MRI literature[J]. J Neurol, 2021, 268(9): 3144-3179. |
| 7 | GAO Y Y, NIE K, HUANG B, et al. Changes of brain structure in Parkinson′s disease patients with mild cognitive impairment analyzed via VBM technology[J]. Neurosci Lett, 2017, 658: 121-132. |
| 8 | JIANG Y Q, CHEN Q Z, YANG Y, et al. White matter lesions contribute to motor and non-motor disorders in Parkinson′s disease: a critical review[J]. Geroscience, 2025, 47(1): 591-609. |
| 9 | DADAR M, GEE M, SHUAIB A, et al. Cognitive and motor correlates of grey and white matter pathology in Parkinson′s disease[J]. Neuroimage Clin, 2020, 27: 102353. |
| 10 | SCAMARCIA P G, AGOSTA F, SPINELLI E G, et al. Longitudinal white matter damage evolution in Parkinson′s disease[J]. Mov Disord, 2022, 37(2): 315-324. |
| 11 | JEONG S H, LEE H S, JUNG J H, et al. Associations between white matter hyperintensities, striatal dopamine loss, and cognition in drug-naïve Parkinson′s disease[J]. Parkinsonism Relat Disord, 2022, 97: 1-7. |
| 12 | HANNING U, TEUBER A, LANG E, et al. White matter hyperintensities are not associated with cognitive decline in early Parkinson′s disease: the DeNoPa cohort[J]. Parkinsonism Relat Disord, 2019, 69: 61-67. |
| 13 | DE BARTOLO M I, OJHA A, LEODORI G, et al. Association of early fMRI connectivity alterations with different cognitive phenotypes in patients with newly diagnosed parkinson disease[J]. Neurology, 2025, 104(1): e210192. |
| 14 | ZARIFKAR P, KIM J, LA C, et al. Cognitive impairment in Parkinson′s disease is associated with Default Mode Network subsystem connectivity and cerebrospinal fluid Aβ[J]. Parkinsonism Relat Disord, 2021, 83: 71-78. |
| 15 | WANG Z J, JIA X Q, CHEN H M, et al. Abnormal spontaneous brain activity in early Parkinson′s disease with mild cognitive impairment: a resting-state fMRI study[J]. Front Physiol, 2018, 9: 1093. |
| 16 | CAMPBELL M C, JACKSON J J, KOLLER J M, et al. Proteinopathy and longitudinal changes in functional connectivity networks in Parkinson disease[J]. Neurology, 2020, 94(7): e718-e728. |
| 17 | XING Y L, FU S S, LI M, et al. Regional neural activity changes in Parkinson′s disease-associated mild cognitive impairment and cognitively normal patients[J]. Neuropsychiatr Dis Treat, 2021, 17: 2697-2706. |
| 18 | WANG Q G, HE W, LIU D H, et al. Functional connectivity in Parkinson′s disease patients with mild cognitive impairment[J]. Int J Gen Med, 2021, 14: 2623-2630. |
| 19 | CHEN L, HUANG T, MA D, et al. Altered default mode network functional connectivity in Parkinson′s disease: a resting-state functional magnetic resonance imaging study[J]. Front Neurosci, 2022, 16: 905121. |
| 20 | IMARISIO A, PILOTTO A, PREMI E, et al. Atypical brain FDG-PET patterns increase the risk of long-term cognitive and motor progression in Parkinson′s disease[J]. Parkinsonism Relat Disord, 2023, 115: 105848. |
| 21 | HOLMES S, TINAZ S. Neuroimaging biomarkers in Parkinson′s disease[J]. Adv Neurobiol, 2024, 40: 617-663. |
| 22 | BOOTH S, KO J H. Radionuclide imaging of the neuroanatomical and neurochemical substrate of cognitive decline in Parkinson′s disease[J]. Nucl Med Mol Imaging, 2024, 58(4): 213-226. |
| 23 | MEYER P T, FRINGS L, RÜCKER G, et al. 18F-FDG PET in Parkinsonism: differential diagnosis and evaluation of cognitive impairment[J]. J Nucl Med, 2017, 58(12): 1888-1898. |
| 24 | BABA T, HOSOKAI Y, NISHIO Y, et al. Longitudinal study of cognitive and cerebral metabolic changes in Parkinson′s disease[J]. J Neurol Sci, 2017, 372: 288-293. |
| 25 | YOO H S, KIM H K, NA H K, et al. Association of striatal dopamine depletion and brain metabolism changes with motor and cognitive deficits in patients with parkinson disease[J]. Neurology, 2024, 103(12): e210105. |
| 26 | BIDESI N S R, VANG ANDERSEN I, WINDHORST A D, et al. The role of neuroimaging in Parkinson′s disease[J]. J Neurochem, 2021, 159(4): 660-689. |
| 27 | CHUNG S J, YOO H S, OH J S, et al. Effect of striatal dopamine depletion on cognition in de novo Parkinson′s disease[J]. Parkinsonism Relat Disord, 2018, 51: 43-48. |
| 28 | CHRISTOPHER L, MARRAS C, DUFF-CANNING S, et al. Combined insular and striatal dopamine dysfunction are associated with executive deficits in Parkinson′s disease with mild cognitive impairment[J]. Brain, 2014, 137(Pt 2): 565-575. |
| 29 | SASIKUMAR S, STRAFELLA A P. Imaging mild cognitive impairment and dementia in Parkinson′s disease[J]. Front Neurol, 2020, 11: 47. |
| 30 | HONG Y J, CHOI S H, KIM S, et al. Cognitive and neurodegenerative trajectories of subjective cognitive decline according to baseline biomarkers: results of the CoSCo study[J]. Alzheimers Dement, 2025, 21(2): e14473. |
| 31 | CHUN M Y, CHUNG S J, KIM S H, et al. Hippocampal perfusion affects motor and cognitive functions in parkinson disease: an early phase 18F-FP-CIT positron emission tomography study[J]. Ann Neurol, 2024, 95(2): 388-399. |
| 32 | WITZIG V, PJONTEK R, TAN S H, et al. Modulating the cholinergic system: novel targets for deep brain stimulation in Parkinson′s disease[J]. J Neurochem, 2025, 169(2): e16264. |
| 33 | KALBE E, FOLKERTS A K, WITT K, et al. German Society of Neurology guidelines for the diagnosis and treatment of cognitive impairment and affective disorders in people with Parkinson′s disease: new spotlights on diagnostic procedures and non-pharmacological interventions[J]. J Neurol, 2024, 271(11): 7330-7357. |
| 34 | SLATER N M, MELZER T R, MYALL D J, et al. Cholinergic basal forebrain integrity and cognition in Parkinson′s disease: a reappraisal of magnetic resonance imaging evidence[J]. Mov Disord, 2024, 39(12): 2155-2172. |
| 35 | VAN DER ZEE S, MÜLLER M L T M, KANEL P, et al. Cholinergic denervation patterns across cognitive domains in Parkinson′s disease[J]. Mov Disord, 2021, 36(3): 642-650. |
| 36 | SCHUMACHER J, RAY N, TEIPEL S, et al. Associations of cholinergic system integrity with cognitive decline in GBA1 and LRRK2 mutation carriers[J]. NPJ Parkinsons Dis, 2024, 10(1): 127. |
| 37 | BOHNEN N I, ALBIN R L, MÜLLER M L T M, et al. Frequency of cholinergic and caudate nucleus dopaminergic deficits across the predemented cognitive spectrum of Parkinson disease and evidence of interaction effects[J]. JAMA Neurol, 2015, 72(2): 194-200. |
| 38 | SOARES É N, COSTA A C D S, FERROLHO G J, et al. Nicotinic acetylcholine receptors in glial cells as molecular target for Parkinson′s disease[J]. Cells, 2024, 13(6): 474. |
| 39 | GOMPERTS S N, LOCASCIO J J, MAKARETZ S J, et al. Tau positron emission tomographic imaging in the Lewy body diseases[J]. JAMA Neurol, 2016, 73(11): 1334-1341. |
| 40 | ZHANG J J, JIN J N, SU D N, et al. Tau-PET imaging in Parkinson′s disease: a systematic review and meta-analysis[J]. Front Neurol, 2023, 14: 1145939. |
| 41 | MIHAESCU A S, VALLI M, URIBE C, et al. Beta amyloid deposition and cognitive decline in Parkinson′s disease: a study of the PPMI cohort[J]. Mol Brain, 2022, 15(1): 79. |
| 42 | WINER J R, MAASS A, PRESSMAN P, et al. Associations between tau, β-amyloid, and cognition in parkinson disease[J]. JAMA Neurol, 2018, 75(2): 227-235. |
| 43 | PAJARES M, ROJO A I, MANDA G, et al. Inflammation in Parkinson′s disease: mechanisms and therapeutic implications[J]. Cells, 2020, 9(7): 1687. |
| 44 | ISIK S, YEMAN KIYAK B, AKBAYIR R, et al. Microglia mediated neuroinflammation in Parkinson′s disease[J]. Cells, 2023, 12(7): 1012. |
| 45 | THEIS H, PAVESE N, REKTOROVÁ I, et al. Imaging biomarkers in prodromal and earliest phases of Parkinson′s disease[J]. J Parkinsons Dis, 2024, 14(s2): S353-S365. |
| 46 | ZHANG P F, GAO F. Neuroinflammation in Parkinson′s disease: a meta-analysis of PET imaging studies[J]. J Neurol, 2022, 269(5): 2304-2314. |
| 47 | EDISON P, AHMED I, FAN Z, et al. Microglia, amyloid, and glucose metabolism in Parkinson′s disease with and without dementia[J]. Neuropsychopharmacology, 2013, 38(6): 938-949. |
| 48 | KOULI A, SPINDLER L R B, FRYER T D, et al. Neuroinflammation is linked to dementia risk in Parkinson′s disease[J]. Brain, 2024, 147(3): 923-935. |
| 49 | PERERA MOLLIGODA ARACHCHIGE A S, GARNER A K. Seven tesla MRI in Alzheimer′s disease research: state of the art and future directions: a narrative review[J]. AIMS Neurosci, 2023, 10(4): 401-422. |
| 50 | KHAN M A, HAIDER N, SINGH T, et al. Promising biomarkers and therapeutic targets for the management of Parkinson′s disease: recent advancements and contemporary research[J]. Metab Brain Dis, 2023, 38(3): 873-919. |
| 51 | WIELER M, GEE M, WAYNE MARTIN W R. Longitudinal midbrain changes in early Parkinson′s disease: iron content estimated from R2*/MRI[J]. Parkinsonism Relat Disord, 2015, 21(3): 179-183. |
| 52 | WELTON T, HARTONO S, SHIH Y C, et al. Ultra-high-field 7T MRI in Parkinson′s disease: ready for clinical use? A narrative review[J]. Quant Imaging Med Surg, 2023, 13(11): 7607-7620. |
| 53 | GRIMALDI S, EL MENDILI M M, ZAARAOUI W, et al. Increased sodium concentration in substantia nigra in early Parkinson′s disease: a preliminary study with ultra-high field (7T) MRI[J]. Front Neurol, 2021, 12: 715618. |
| 54 | XIAO K M, LI J L, ZHOU L Y, et al. Retinopathy in Parkinson′s disease: a potential biomarker for early diagnosis and clinical assessment[J]. Neuroscience, 2025, 565: 202-210. |
| 55 | HANNAWAY N, ZARKALI A, LEYLAND L A, et al. Visual dysfunction is a better predictor than retinal thickness for dementia in Parkinson′s disease[J]. J Neurol Neurosurg Psychiatry, 2023, 94(9): 742-750. |
| 56 | CHRYSOU A, HEIKKA T, VAN DER ZEE S, et al. Reduced thickness of the retina in de novo Parkinson′s disease shows a distinct pattern, different from glaucoma[J]. J Parkinsons Dis, 2024, 14(3): 507-519. |
| 57 | ZHANG J R, CAO Y L, LI K, et al. Correlations between retinal nerve fiber layer thickness and cognitive progression in Parkinson′s disease: a longitudinal study[J]. Parkinsonism Relat Disord, 2021, 82: 92-97. |
| 58 | MURUETA-GOYENA A, ROMERO-BASCONES D, TEIJEIRA-PORTAS S, et al. Association of retinal neurodegeneration with the progression of cognitive decline in Parkinson′s disease[J]. NPJ Parkinsons Dis, 2024, 10(1): 26. |
| 59 | SHI M G, FENG X M, ZHI H Y, et al. Machine learning-based radiomics in neurodegenerative and cerebrovascular disease[J]. MedComm, 2024, 5(11): e778. |
| 60 | BU S T, PANG H Z, LI X L, et al. Multi-parametric radiomics of conventional T1 weighted and susceptibility-weighted imaging for differential diagnosis of idiopathic Parkinson′s disease and multiple system atrophy[J]. BMC Med Imaging, 2023, 23(1): 204. |
| 61 | PANAHI M, HOSSEINI M S. Multi-modality radiomics of conventional T1 weighted and diffusion tensor imaging for differentiating Parkinson′s disease motor subtypes in early-stages[J]. Sci Rep, 2024, 14(1): 20708. |
| 62 | OLIVEIRA G C, PAH N D, NGO Q C, et al. A pilot study for speech assessment to detect the severity of Parkinson′s disease: an ensemble approach[J]. Comput Biol Med, 2025, 185: 109565. |
| 63 | ZHU Y Y, WANG F, NING P P, et al. Multimodal neuroimaging-based prediction of Parkinson′s disease with mild cognitive impairment using machine learning technique[J]. NPJ Parkinsons Dis, 2024, 10(1): 218. |
| [1] | 林祎嘉, 程丽珍, 胡廷军, 苗雅. 基于孟德尔随机化法的2型糖尿病与认知障碍因果关系研究[J]. 上海交通大学学报(医学版), 2025, 45(2): 204-210. |
| [2] | 赵欣欣, 裴孟超. 纹理多参数分析在帕金森病患者脑磁化率定量中的应用研究[J]. 上海交通大学学报(医学版), 2025, 45(1): 69-78. |
| [3] | 杜亚格, 卢言慧, 安宇, 宋颖, 郑婕. 肠道菌群在糖尿病认知功能障碍中的作用机制及靶向干预的研究进展[J]. 上海交通大学学报(医学版), 2024, 44(4): 494-500. |
| [4] | 胡灿芳, 钟传钰, 曹立. 神经调控技术在帕金森病治疗中的应用研究进展[J]. 上海交通大学学报(医学版), 2024, 44(2): 258-263. |
| [5] | 高雄, 张秋霞, 杨苗苗, 罗玮, 王月刚, 修建成. 房颤与认知障碍的因果关系:一项孟德尔随机化研究[J]. 上海交通大学学报(医学版), 2023, 43(11): 1359-1365. |
| [6] | 张蓉, 陆丽, 王亚昕, 董文倩, 张宇, 周健. 糖尿病患者血糖波动异常与认知功能障碍关系的研究进展[J]. 上海交通大学学报(医学版), 2022, 42(2): 235-240. |
| [7] | 袁笑, 田野野, 薛峥. 6-OHDA诱导的帕金森病小鼠表现出以p16Ink4a上调和星形胶质细胞衰老为特征的衰老表型[J]. 上海交通大学学报(医学版), 2021, 41(7): 876-883. |
| [8] | 张小小, 张陈诚, 赖伊杰, 孙伯民. 丘脑底核脑深部电刺激术对帕金森病合并抑郁影响的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(6): 815-820. |
| [9] | 罗 钢,崔永晨,曹 越,张俊峰. 手术创伤对2型糖尿病小鼠术后认知功能和脑葡萄糖代谢的影响[J]. 上海交通大学学报(医学版), 2020, 40(11): 1468-1472. |
| [10] | 王 滔1,张陈诚1,李殿友1,孙伯民1,傅 萌2. 帕金森病脑深部电刺激电极术后位置规律分析[J]. 上海交通大学学报(医学版), 2020, 40(1): 64-. |
| [11] | 贾芷莹 1, 2,董旻晔 1, 2,施贞夙 2, 3,金春林 4,李国红 1, 2. 基于机器学习的轻度认知功能障碍筛查研究[J]. 上海交通大学学报(医学版), 2019, 39(8): 908-. |
| [12] | 杨笑 1,杜芸兰 1,白雪峰 2,朱德生 1,王飞 1,韩露 1,管阳太 1. 帕金森病细胞模型中分子伴侣介导自噬对 α-突触核蛋白低聚体水平的影响[J]. 上海交通大学学报(医学版), 2019, 39(3): 239-. |
| [13] | 姜彩霞 1,邹敏 2,姜丽萍 2. 基于聚类分析的上海市 590位老人老年综合征的特征分析[J]. 上海交通大学学报(医学版), 2018, 38(9): 1072-. |
| [14] | 杨笑,杜芸兰,管阳太. α-突触核蛋白乙酰化修饰在帕金森病中作用的研究进展[J]. 上海交通大学学报(医学版), 2018, 38(11): 1381-. |
| [15] | 黄菲菲,张斌,吴丹红,张定国,刘军 . 加速度测量和表面肌电图检测对帕金森病震颤与特发性震颤的鉴别诊断价值[J]. 上海交通大学学报(医学版), 2017, 37(1): 34-. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||