Journal of Shanghai Jiao Tong University (Medical Science) ›› 2022, Vol. 42 ›› Issue (10): 1482-1489.doi: 10.3969/j.issn.1674-8115.2022.10.015
• Review • Previous Articles
FENG Yiyuan1(), XU Zhongyun1, DING Lin1, YIN Yafu1, WANG Hui1, CHENG Weiwei1,2()
Received:
2022-01-10
Accepted:
2022-06-14
Online:
2022-10-28
Published:
2022-12-02
Contact:
CHENG Weiwei
E-mail:fengyy1019@sina.com;wcheng37@outlook.com
Supported by:
CLC Number:
FENG Yiyuan, XU Zhongyun, DING Lin, YIN Yafu, WANG Hui, CHENG Weiwei. Initiation and regulatory mechanism of C9ORF72 (G4C2)n RAN translation[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(10): 1482-1489.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2022.10.015
1 | NELSON D L, ORR H T, WARREN S T. The unstable repeats: three evolving faces of neurological disease[J]. Neuron, 2013, 77(5): 825-843. |
2 | CASTELLI L M, HUANG W P, LIN Y H, et al. Mechanisms of repeat-associated non-AUG translation in neurological microsatellite expansion disorders[J]. Biochem Soc Trans, 2021, 49(2): 775-792. |
3 | MACDONALD M E, AMBROSE C M, DUYAO M P, et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group[J]. Cell, 1993, 72(6): 971-983. |
4 | VERKERK A J, PIERETTI M, SUTCLIFFE J S, et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome[J]. Cell, 1991, 65(5): 905-914. |
5 | BROOK J D, MCCURRACH M E, HARLEY H G, et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3' end of a transcript encoding a protein kinase family member[J]. Cell, 1992, 69(2): 385. |
6 | FU Y H, PIZZUTI A, FENWICK R G Jr, et al. An unstable triplet repeat in a gene related to myotonic muscular dystrophy[J]. Science, 1992, 255(5049): 1256-1258. |
7 | DEJESUS-HERNANDEZ M, MACKENZIE I R, BOEVE B F, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS[J]. Neuron, 2011, 72(2): 245-256. |
8 | BANEZ-CORONEL M, RANUM L P W. Repeat-associated non-AUG (RAN) translation: insights from pathology[J]. Lab Invest, 2019, 99(7): 929-942. |
9 | ZU T, GIBBENS B, DOTY N S, et al. Non-ATG-initiated translation directed by microsatellite expansions[J]. Proc Natl Acad Sci USA, 2011, 108(1): 260-265. |
10 | TODD P K, OH S Y, KRANS A, et al. CGG repeat-associated translation mediates neurodegeneration in fragile X tremor ataxia syndrome[J]. Neuron, 2013, 78(3): 440-455. |
11 | SELLIER C, BUIJSEN R A M, HE F, et al. Translation of expanded CGG repeats into FMRpolyG is pathogenic and may contribute to fragile X tremor ataxia syndrome[J]. Neuron, 2017, 93(2): 331-347. |
12 | MORI K, WENG S M, ARZBERGER T, et al. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS[J]. Science, 2013, 339(6125): 1335-1338. |
13 | GENDRON T F, BIENIEK K F, ZHANG Y J, et al. Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS[J]. Acta Neuropathol, 2013, 126(6): 829-844. |
14 | ASH P E, BIENIEK K F, GENDRON T F, et al. Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS[J]. Neuron, 2013, 77(4): 639-646. |
15 | BAÑEZ-CORONEL M, AYHAN F, TARABOCHIA A D, et al. RAN translation in Huntington disease[J]. Neuron, 2015, 88(4): 667-677. |
16 | RENTON A E, MAJOUNIE E, WAITE A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD[J]. Neuron, 2011, 72(2): 257-268. |
17 | SMITH B N, NEWHOUSE S, SHATUNOV A, et al. The C9ORF72 expansion mutation is a common cause of ALS+/-FTD in Europe and has a single founder[J]. Eur J Hum Genet, 2013, 21(1): 102-108. |
18 | MAJOUNIE E, RENTON A E, MOK K, et al. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study[J]. Lancet Neurol, 2012, 11(4): 323-330. |
19 | MACKENZIE I R, ARZBERGER T, KREMMER E, et al. Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological correlations[J]. Acta Neuropathol, 2013, 126(6): 859-879. |
20 | ZU T, LIU Y J, BAÑEZ-CORONEL M, et al. RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia[J]. Proc Natl Acad Sci USA, 2013, 110(51): E4968-E4977. |
21 | LOPEZ-GONZALEZ R, LU Y B, GENDRON T F, et al. Poly(GR) in C9ORF72-related ALS/FTD compromises mitochondrial function and increases oxidative stress and DNA damage in iPSC-derived motor neurons[J]. Neuron, 2016, 92(2): 383-391. |
22 | ZHANG Y J, GENDRON T F, GRIMA J C, et al. C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins[J]. Nat Neurosci, 2016, 19(5): 668-677. |
23 | GENDRON T F, BELZIL V V, ZHANG Y J, et al. Mechanisms of toxicity in C9FTLD/ALS[J]. Acta Neuropathol, 2014, 127(3): 359-376. |
24 | ZHANG K J, WANG A L, ZHONG K K, et al. UBQLN2-HSP70 axis reduces poly-Gly-Ala aggregates and alleviates behavioral defects in the C9ORF72 animal model[J]. Neuron, 2021, 109(12): 1949-1962.e6. |
25 | TABET R, SCHAEFFER L, FREYERMUTH F, et al. CUG initiation and frameshifting enable production of dipeptide repeat proteins from ALS/FTD C9ORF72 transcripts[J]. Nat Commun, 2018, 9(1): 152. |
26 | GREEN K M, GLINEBURG M R, KEARSE M G, et al. RAN translation at C9orf72-associated repeat expansions is selectively enhanced by the integrated stress response[J]. Nat Commun, 2017, 8(1): 2005. |
27 | CHENG W W, WANG S P, MESTRE A A, et al. C9ORF72 GGGGCC repeat-associated non-AUG translation is upregulated by stress through eIF2α phosphorylation[J]. Nat Commun, 2018, 9(1): 51. |
28 | CLEARY J D, RANUM L P. New developments in RAN translation: insights from multiple diseases[J]. Curr Opin Genet Dev, 2017, 44: 125-134. |
29 | WOJCIECHOWSKA M, OLEJNICZAK M, GALKA-MARCINIAK P, et al. RAN translation and frameshifting as translational challenges at simple repeats of human neurodegenerative disorders[J]. Nucleic Acids Res, 2014, 42(19): 11849-11864. |
30 | GOODMAN L D, PRUDENCIO M, SRINIVASAN A R, et al. eIF4B and eIF4H mediate GR production from expanded G4C2 in a Drosophila model for C9orf72-associated ALS[J]. Acta Neuropathol Commun, 2019, 7(1): 62. |
31 | COOPER-KNOCK J, WALSH M J, HIGGINBOTTOM A, et al. Sequestration of multiple RNA recognition motif-containing proteins by C9orf72 repeat expansions[J]. Brain, 2014, 137(Pt 7): 2040-2051. |
32 | JODOIN R, CARRIER J C, RIVARD N, et al. G-quadruplex located in the 5' UTR of the BAG-1 mRNA affects both its cap-dependent and cap-independent translation through global secondary structure maintenance[J]. Nucleic Acids Res, 2019, 47(19): 10247-10266. |
33 | WOLFE A L, SINGH K, ZHONG Y, et al. RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer[J]. Nature, 2014, 513(7516): 65-70. |
34 | HAEUSLER A R, DONNELLY C J, PERIZ G, et al. C9orf72 nucleotide repeat structures initiate molecular cascades of disease[J]. Nature, 2014, 507(7491): 195-200. |
35 | ŠKET P, POHLEVEN J, KOVANDA A, et al. Characterization of DNA G-quadruplex species forming from C9ORF72 G4C2-expanded repeats associated with amyotrophic lateral sclerosis and frontotemporal lobar degeneration[J]. Neurobiol Aging, 2015, 36(2): 1091-1096. |
36 | BRCIC J, PLAVEC J. NMR structure of a G-quadruplex formed by four d(G4C2) repeats: insights into structural polymorphism[J]. Nucleic Acids Res, 2018, 46(21): 11605-11617. |
37 | SUN Y J, ATAS E, LINDQVIST L, et al. The eukaryotic initiation factor eIF4H facilitates loop-binding, repetitive RNA unwinding by the eIF4A DEAD-box helicase[J]. Nucleic Acids Res, 2012, 40(13): 6199-6207. |
38 | HARMS U, ANDREOU A Z, GUBAEV A, et al. eIF4B, eIF4G and RNA regulate eIF4A activity in translation initiation by modulating the eIF4A conformational cycle[J]. Nucleic Acids Res, 2014, 42(12): 7911-7922. |
39 | WESTERGARD T, MCAVOY K, RUSSELL K, et al. Repeat-associated non-AUG translation in C9orf72-ALS/FTD is driven by neuronal excitation and stress[J]. EMBO Mol Med, 2019, 11(2): e9423. |
40 | ZU T, GUO S, BARDHI O, et al. Metformin inhibits RAN translation through PKR pathway and mitigates disease in C9orf72 ALS/FTD mice[J]. Proc Natl Acad Sci USA, 2020, 117(31): 18591-18599. |
41 | SONOBE Y, GHADGE G, MASAKI K, et al. Translation of dipeptide repeat proteins from the C9ORF72 expanded repeat is associated with cellular stress[J]. Neurobiol Dis, 2018, 116: 155-165. |
42 | HOLCIK M, SONENBERG N. Translational control in stress and apoptosis[J]. Nat Rev Mol Cell Biol, 2005, 6(4): 318-327. |
43 | ORTEGA J A, DALEY E L, KOUR S, et al. Nucleocytoplasmic proteomic analysis uncovers eRF1 and nonsense-mediated decay as modifiers of ALS/FTD C9orf72 toxicity[J]. Neuron, 2020, 106(1): 90-107.e13. |
44 | JOVIČIĆ A, MERTENS J, BOEYNAEMS S, et al. Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS[J]. Nat Neurosci, 2015, 18(9): 1226-1229. |
45 | KRAMER N J, HANEY M S, MORGENS D W, et al. CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity[J]. Nat Genet, 2018, 50(4): 603-612. |
46 | MAOR-NOF M, SHIPONY Z, LOPEZ-GONZALEZ R, et al. p53 is a central regulator driving neurodegeneration caused by C9orf72 poly(PR)[J]. Cell, 2021, 184(3): 689-708.e20. |
47 | BERSON A, GOODMAN L D, SARTORIS A N, et al. Drosophila Ref1/ALYREF regulates transcription and toxicity associated with ALS/FTD disease etiologies[J]. Acta Neuropathol Commun, 2019, 7(1): 65. |
48 | HAUTBERGUE G M, CASTELLI L M, FERRAIUOLO L, et al. SRSF1-dependent nuclear export inhibition of C9ORF72 repeat transcripts prevents neurodegeneration and associated motor deficits[J]. Nat Commun, 2017, 8: 16063. |
49 | WANG S P, LATALLO M J, ZHANG Z, et al. Nuclear export and translation of circular repeat-containing intronic RNA in C9ORF72-ALS/FTD[J]. Nat Commun, 2021, 12(1): 4908. |
50 | ZHANG K, DONNELLY C J, HAEUSLER A R, et al. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport[J]. Nature, 2015, 525(7567): 56-61. |
51 | FREIBAUM B D, LU Y B, LOPEZ-GONZALEZ R, et al. GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport[J]. Nature, 2015, 525(7567): 129-133. |
52 | YAMADA S B, GENDRON T F, NICCOLI T, et al. RPS25 is required for efficient RAN translation of C9orf72 and other neurodegenerative disease-associated nucleotide repeats[J]. Nat Neurosci, 2019, 22(9): 1383-1388. |
53 | MAO Y H, DONG L M, LIU X M, et al. m6A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2[J]. Nat Commun, 2019, 10(1): 5332. |
54 | SHEN L, PELLETIER J. General and target-specific DExD/H RNA helicases in eukaryotic translation initiation[J]. Int J Mol Sci, 2020, 21(12): E4402. |
55 | CHENG W W, WANG S P, ZHANG Z, et al. CRISPR-Cas9 screens identify the RNA helicase DDX3X as a repressor of C9ORF72 (GGGGCC)n repeat-associated non-AUG translation[J]. Neuron, 2019, 104(5): 885-898.e8. |
56 | LIU H H, LU Y N, PAUL T, et al. A helicase unwinds hexanucleotide repeat RNA G-quadruplexes and facilitates repeat-associated non-AUG translation[J]. J Am Chem Soc, 2021, 143(19): 7368-7379. |
57 | TSENG Y J, SANDWITH S N, GREEN K M, et al. The RNA helicase DHX36-G4R1 modulates C9orf72 GGGGCC hexanucleotide repeat-associated translation[J]. J Biol Chem, 2021, 297(2): 100914. |
58 | FRATTA P, MIZIELINSKA S, NICOLL A J, et al. C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-quadruplexes[J]. Sci Rep, 2012, 2: 1016. |
59 | REDDY K, ZAMIRI B, STANLEY S Y R, et al. The disease-associated r(GGGGCC)n repeat from the C9orf72 gene forms tract length-dependent uni- and multimolecular RNA G-quadruplex structures[J]. J Biol Chem, 2013, 288(14): 9860-9866. |
60 | CONLON E G, LU L, SHARMA A, et al. The C9ORF72 GGGGCC expansion forms RNA G-quadruplex inclusions and sequesters hnRNP H to disrupt splicing in ALS brains[J]. Elife, 2016, 5: e17820. |
61 | SU Z M, ZHANG Y J, GENDRON T F, et al. Discovery of a biomarker and lead small molecules to target r(GGGGCC)-associated defects in c9FTD/ALS[J]. Neuron, 2014, 83(5): 1043-1050. |
62 | SIMONE R, BALENDRA R, MOENS T G, et al. G-quadruplex-binding small molecules ameliorate C9orf72 FTD/ALS pathology in vitro and in vivo[J]. EMBO Mol Med, 2018, 10(1): 22-31. |
63 | WANG Z F, URSU A, CHILDS-DISNEY J L, et al. The hairpin form of r(G4C2)exp in c9ALS/FTD is repeat-associated non-ATG translated and a target for bioactive small molecules[J]. Cell Chem Biol, 2019, 26(2): 179-190.e12. |
[1] | TANG Kairan, WU Qiong, HUANG Sijia, QIU Xudong, LI Wenyan, DENG Huayun, HUANG Lei. Screening of MUCIN family members synergistic with MUC1 in tumor chemoresistance [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(9): 1288-1295. |
[2] | CHU Yunkai, LIAO Chunhua, DENG Huayun, HUANG Lei. Study of the regulatory network of MUC1 and tumor-associated proteins [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(8): 1024-1033. |
[3] | LIU Hongqiang, LU Yanqing, GAO Yuxuan, WANG Yiyun, WANG Chuandong, ZHANG Xiaoling. Construction of OPEI vector for silencing TRAF6 to promote cartilage regeneration in inflammatory environment [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(7): 846-857. |
[4] | ZHAO Jiuhong, TONG Jiating, SHEN Zhijun, LÜ Yehui. Research progress in the mechanism of interactive regulation between circular RNA and oxidative stress [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(3): 393-399. |
[5] | CHEN Yiting, ZHAO Anda, LI Rong, KANG Wenhui, LI Shenghui. Review of the role of circulating exosomal microRNA in bronchial asthma [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(3): 375-380. |
[6] | Tian-yao SUN, Shi-feng JIANG, Qin XU, Jun-ling LIU, Su-ying DANG, Xue-mei FAN. A novel antithrombotic antibody targeting the binding sites of the coagulation factor FⅨa-FⅧa complex [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(9): 1133-1141. |
[7] | Li LIU, Zi-long GENG, Jia-huan CHEN, Sha-sha ZHANG, Bing ZHANG. Whole gene expression profile analysis of miRNAs in human umbilical vein endothelial cells regulated by vascular endothelial growth factor A [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(9): 1183-1189. |
[8] | Jing-yan HU, Lin ZHANG, Liang ZHANG. Function of human nucleic acid alkylation damage repair enzyme ALKBH3 in cancer progression and oncotherapy [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(5): 684-689. |
[9] | Ze-nan WU, Chen ZHANG. Research advances in inflammatory mechanism of anhedonia [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(2): 241-245. |
[10] | HE Ming, WEI Qian, ZHANG Ying-ting. Research progress in the mechanism of ferroptosis and its role in liver related diseases [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(11): 1519-1523. |
[11] | WU Ruo-lan, ZHANG Yue, YU Run-hua, DING Ze-yu, HUANG Ying. Effect of protein phosphatase 2A on energy metabolism [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(11): 1530-1535. |
[12] | YANG Shuo-yao1, 2, QI Zi-yi3, XIANG Jun4. Research progress of mitochondrial Lon protease and its related diseases [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(5): 683-687. |
[13] | QU Guo-jun1, LU Yuan-feng2, LI Yu1. Mechanism of CCT2, a new downstream substrate of PDGFRα, on proliferation of tumor cells [J]. , 2019, 39(1): 28-. |
[14] | DONG Rui1, WANG Ying1, WANG Yu-mei1, SUN Zu-jun1, 2, YI Jing1, YANG Jie1. SENP3-mediated de-SUMOylation of p53 inhibits its activity in human lung cancer cell lines [J]. , 2018, 38(7): 732-. |
[15] | LIU Jin-quan1, XIE Bing2. Role of BV8 and its antibody in angiogenesis [J]. , 2018, 38(4): 472-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||