Journal of Shanghai Jiao Tong University (Medical Science) ›› 2023, Vol. 43 ›› Issue (3): 374-379.doi: 10.3969/j.issn.1674-8115.2023.03.014
• Review • Previous Articles
GE Lingling1(), HUANG Hongjun2, LUO Yan1,2()
Received:
2022-10-28
Accepted:
2023-03-24
Online:
2023-03-28
Published:
2023-03-28
Contact:
LUO Yan
E-mail:gelingling9533@163.com;ly11087@rjh.com.cn
Supported by:
CLC Number:
GE Lingling, HUANG Hongjun, LUO Yan. Research progress in the role and mechanism of lactylation in diseases[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(3): 374-379.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2023.03.014
1 | XIAO D, HU C X, XU X Z, et al. A d, l-lactate biosensor based on allosteric transcription factor LldR and amplified luminescent proximity homogeneous assay[J]. Biosens Bioelectron, 2022, 211: 114378. |
2 | DE BARI L, ATLANTE A. Including the mitochondrial metabolism of L-lactate in cancer metabolic reprogramming[J]. Cell Mol Life Sci, 2018, 75(15): 2763-2776. |
3 | WARBURG O, WIND F, NEGELEIN E. The metabolism of tumors in the body[J]. J Gen Physiol, 1927, 8(6): 519-530. |
4 | ZHANG D, TANG Z Y, HUANG H, et al. Metabolic regulation of gene expression by histone lactylation[J]. Nature, 2019, 574(7779): 575-580. |
5 | DAI X F, LV X Y, THOMPSON E W, et al. Histone lactylation: epigenetic mark of glycolytic switch[J]. Trends Genet, 2022, 38(2): 124-127. |
6 | PÉREZ-TOMÁS R, PÉREZ-GUILLÉN I. Lactate in the tumor microenvironment: an essential molecule in cancer progression and treatment[J]. Cancers (Basel), 2020, 12(11): 3244. |
7 | DE-BRITO N M, DUNCAN-MORETTI J, DA-COSTA H C, et al. Aerobic glycolysis is a metabolic requirement to maintain the M2-like polarization of tumor-associated macrophages[J]. Biochim Biophys Acta Mol Cell Res, 2020, 1867(2): 118604. |
8 | FU S C, HE K X, TIAN C X, et al. Impaired lipid biosynthesis hinders anti-tumor efficacy of intratumoral iNKT cells[J]. Nat Commun, 2020, 11(1): 438. |
9 | RAYCHAUDHURI D, BHATTACHARYA R, SINHA B P, et al. Lactate induces pro-tumor reprogramming in intratumoral plasmacytoid dendritic cells[J]. Front Immunol, 2019, 10: 1878. |
10 | BROWN T P, BHATTACHARJEE P, RAMACHANDRAN S, et al. The lactate receptor GPR81 promotes breast cancer growth via a paracrine mechanism involving antigen-presenting cells in the tumor microenvironment[J]. Oncogene, 2020, 39(16): 3292-3304. |
11 | XIONG J, HE J, ZHU J, et al. Lactylation-driven METTL3-mediated RNA m6A modification promotes immunosuppression of tumor-infiltrating myeloid cells[J]. Mol Cell, 2022, 82(9): 1660-1677.e10. |
12 | WANG L, LI S S, LUO H H, et al. PCSK9 promotes the progression and metastasis of colon cancer cells through regulation of EMT and PI3K/AKT signaling in tumor cells and phenotypic polarization of macrophages[J]. J Exp Clin Cancer Res, 2022, 41(1): 303. |
13 | LUO Y, YANG Z, YU Y, et al. HIF1α lactylation enhances KIAA1199 transcription to promote angiogenesis and vasculogenic mimicry in prostate cancer[J]. Int J Biol Macromol, 2022, 222 (Pt B): 2225-2243. |
14 | YANG D W, YIN J, SHAN L Q, et al. Identification of lysine-lactylated substrates in gastric cancer cells[J]. iScience, 2022, 25(7): 104630. |
15 | TUAN T A, HA N T T, XOAY T D, et al. Fibrinolytic impairment and mortality in pediatric septic shock: a single-center prospective observational study[J]. Pediatr Crit Care Med, 2021, 22(11): 969-977. |
16 | CASLIN H L, ABEBAYEHU D, ABDUL QAYUM A, et al. Lactic acid inhibits lipopolysaccharide-induced mast cell function by limiting glycolysis and ATP availability[J]. J Immunol, 2019, 203(2): 453-464. |
17 | WANG L, HE H W, XING Z Q, et al. Lactate induces alternative polarization (M2) of macrophages under lipopolysaccharide stimulation in vitro through G-protein coupled receptor 81[J]. Chin Med J (Engl), 2020, 133(14): 1761-1763. |
18 | BESNIER E, COQUEREL D, KOUADRI G, et al. Hypertonic sodium lactate improves microcirculation, cardiac function, and inflammation in a rat model of sepsis[J]. Crit Care, 2020, 24(1): 354. |
19 | YOO H, IM Y, KO R E, et al. Association of plasma level of high-mobility group box-1 with necroptosis and sepsis outcomes[J]. Sci Rep, 2021, 11(1): 9512. |
20 | YANG K, FAN M, WANG X H, et al. Lactate promotes macrophage HMGB1 lactylation, acetylation, and exosomal release in polymicrobial sepsis[J]. Cell Death Differ, 2022, 29(1): 133-146. |
21 | CHU X, DI C Y, CHANG P P, et al. Lactylated histone H3K18 as a potential biomarker for the diagnosis and predicting the severity of septic shock[J]. Front Immunol, 2021, 12: 786666. |
22 | KACZMARCZYK O, DĄBEK-DROBNY A, WOŹNIAKIEWICZ M, et al. Fecal levels of lactic, succinic and short-chain fatty acids in patients with ulcerative colitis and crohn disease: a pilot study[J]. J Clin Med, 2021, 10(20): 4701. |
23 | IRAPORDA C, ROMANIN D E, BENGOA A A, et al. Local treatment with lactate prevents intestinal inflammation in the TNBS-induced colitis model[J]. Front Immunol, 2016, 7: 651. |
24 | RANGANATHAN P, SHANMUGAM A, SWAFFORD D, et al. GPR81, a cell-surface receptor for lactate, regulates intestinal homeostasis and protects mice from experimental colitis[J]. J Immunol, 2018, 200(5): 1781-1789. |
25 | IRIZARRY-CARO R A, MCDANIEL M M, OVERCAST G R, et al. TLR signaling adapter BCAP regulates inflammatory to reparatory macrophage transition by promoting histone lactylation[J]. Proc Natl Acad Sci U S A, 2020, 117(48): 30628-30638. |
26 | LOPEZ KROL A, NEHRING H P, KRAUSE F F, et al. Lactate induces metabolic and epigenetic reprogramming of pro-inflammatory Th17 cells[J]. EMBO Rep, 2022, 23(12): e54685. |
27 | PRUETT B S, MEADOR-WOODRUFF J H. Evidence for altered energy metabolism, increased lactate, and decreased pH in schizophrenia brain: a focused review and meta-analysis of human postmortem and magnetic resonance spectroscopy studies[J]. Schizophr Res, 2020, 223: 29-42. |
28 | DOGAN A E, YUKSEL C, DU F, et al. Brain lactate and pH in schizophrenia and bipolar disorder: a systematic review of findings from magnetic resonance studies[J]. Neuropsychopharmacology, 2018, 43(8): 1681-1690. |
29 | PAN R Y, HE L, ZHANG J, et al. Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer's disease[J]. Cell Metab, 2022, 34(4): 634-648.e6. |
30 | KARNIB N, EL-GHANDOUR R, EL HAYEK L, et al. Lactate is an antidepressant that mediates resilience to stress by modulating the hippocampal levels and activity of histone deacetylases[J]. Neuropsychopharmacology, 2019, 44(6): 1152-1162. |
31 | HAGIHARA H, SHOJI H, OTABI H, et al. Protein lactylation induced by neural excitation[J]. Cell Rep, 2021, 37(2): 109820. |
32 | KINOSHITA T, GOTO T. Molecular mechanisms of pulmonary fibrogenesis and its progression to lung cancer: a review[J]. Int J Mol Sci, 2019, 20(6): 1461. |
33 | GARANTZIOTIS S. Myofibroblast-macrophage interactions turn sour in fibrotic lungs[J]. Am J Respir Cell Mol Biol, 2021, 64(1): 14-15. |
34 | LI J X, ZHAI X X, SUN X, et al. Metabolic reprogramming of pulmonary fibrosis[J]. Front Pharmacol, 2022, 13: 1031890. |
35 | CUI H C, XIE N, BANERJEE S, et al. Lung myofibroblasts promote macrophage profibrotic activity through lactate-induced histone lactylation[J]. Am J Respir Cell Mol Biol, 2021, 64(1): 115-125. |
36 | YIN D Q, JIANG N, CHENG C, et al. Protein lactylation and metabolic regulation of the zoonotic parasite Toxoplasma gondii[J]. Genomics Proteomics Bioinformatics, 2022: S1672-S0229(22)00126-7. |
37 | CATHERINE J, MERRICK. Histone lactylation: a new epigenetic axis for host-parasite signalling in malaria?[J]. Trends Parasitol, 2023, 39(1): 12-16. |
38 | YANG Q Y, LIU J, WANG Y, et al. A proteomic atlas of ligand-receptor interactions at the ovine maternal-fetal interface reveals the role of histone lactylation in uterine remodeling[J]. J Biol Chem, 2022, 298(1): 101456. |
39 | WANG N X, WANG W W, WANG X Q, et al. Histone lactylation boosts reparative gene activation post-myocardial infarction[J]. Circ Res, 2022, 131(11): 893-908. |
40 | DONG H Y, ZHANG J J, ZHANG H, et al. YiaC and CobB regulate lysine lactylation in Escherichia coli[J]. Nat Commun, 2022, 13(1): 6628. |
[1] | WU Zhaoyu, XU Zhijue, PU Hongji, WANG Xin, LU Xinwu. Physiological function of nerve injury-induced protein 1 and its role in relevant diseases [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(3): 358-364. |
[2] | WU Bing, LI Xiaomin, LIU Siyu, ZHAO Lulu, WU Wen, HAO Yongqiang, AI Songtao. Preliminary application of improved 3D printed pathological section box to assisting stitching pathological images of bone tumor [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(2): 180-187. |
[3] | XIE Xiaolei, JIANG Peixin, ZHANG Jinghong, MO Junjian, WU Kefan, ZENG Kangyi. A review of RIZ1 regulation of the signal pathways in obesity and tumors [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(1): 114-119. |
[4] | MA Fangfang, QIN Jiejie, REN Lingjie, TANG Xiaomei, LIU Jia, SHI Minmin, JIANG Lingxi. Establishment of a 3D culture model in vitro of pancreatic cancer primary cells using hydrogel microspheres [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(1): 79-87. |
[5] | CUI Xiwei, CHUNG Manhon, AIMAIER Rehanguli, WANG Zhichao, LI Qingfeng. Role of human pleiotrophin in the metastasis of malignant peripheral nerve sheath tumor [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(9): 1225-1238. |
[6] | CHU Yunkai, LIAO Chunhua, DENG Huayun, HUANG Lei. Study of the regulatory network of MUC1 and tumor-associated proteins [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(8): 1024-1033. |
[7] | QIU Jiahui, CAI Qianqian, YANG Yan, CHENG Feichi, QIU Zhengjun, HUANG Chen. Value of combined perineural lymphovascular invasion and tumor-stroma ratio in guiding the prognosis of colorecatal cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(8): 1070-1080. |
[8] | LIN Jiayu, QIN Jiejie, JIANG Lingxi. Progress in metabolism of the immune cells in tumor microenvironment [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(8): 1122-1130. |
[9] | LIU Hongqiang, LU Yanqing, GAO Yuxuan, WANG Yiyun, WANG Chuandong, ZHANG Xiaoling. Construction of OPEI vector for silencing TRAF6 to promote cartilage regeneration in inflammatory environment [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(7): 846-857. |
[10] | WANG Yuxin, SUN Ruiqi, LIU Jianhua, HE Weina. Development of pH-responsive fluorescent probe for tumor microenvironment imaging [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(7): 875-884. |
[11] | HU Xiao, ZHANG Xin, GU Yang. Study on the interaction between body weight and C1q tumour necrosis factor-related protein 1 in patients with myocardial infarction [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(6): 786-791. |
[12] | ZHENG Shifan, MA Jiao. Research progress in the role of cancer stem cell metabolism in tumor development [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(6): 825-832. |
[13] | ZHANG Xiuqi, SHEN Baiyong. Advances in cytological mechanism of neural invasion in pancreatic ductal adenocarcinoma [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(6): 833-838. |
[14] | WANG Hui, ZHAO Ying, WEN Lirong, CAO Jun, YANG Jiping, YUAN Yongming. Diagnostic value of PSA, TAP and MACC1 expression in blood of patients with prostate cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(4): 496-501. |
[15] | XU Jingxuan, DU Shaoqian, CAO Yuan, WANG Hongxia, HUANG Weiyi. MMP14 expression in pancreatic cancer and its correlation with characteristics of tumor immune microenvironment [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(3): 312-322. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||