JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE) ›› 2021, Vol. 41 ›› Issue (3): 371-375.doi: 10.3969/j.issn.1674-8115.2021.03.015
• Review • Previous Articles Next Articles
Yue-ting JIANG1(), Jia-ying NI1, Shen-rui GUO1, Han LI1, Yu-jia ZHUANG1, Feng WANG1,2()
Received:
2020-02-17
Online:
2021-03-28
Published:
2021-04-06
Contact:
Feng WANG
E-mail:syrinx@sjtu.edu.cn;wangfeng16@sjtu.edu.cn
Supported by:
CLC Number:
Yue-ting JIANG, Jia-ying NI, Shen-rui GUO, Han LI, Yu-jia ZHUANG, Feng WANG. Physiological function of cholesterol sulfate and its role in related diseases[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(3): 371-375.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2021.03.015
1 | National Center for Biotechnology Information. PubChem Compound Summary for CID65076, Cholesterol sulfate[EB/OL].[2021-01-02].. |
2 | Koizumi M, Momoeda M, Hiroi H, et al. Expression and regulation of cholesterol sulfotransferase (SULT2B1b) in human endometrium[J]. Fertil Steril, 2010, 93(5): 1538-1544. |
3 | Zenri F, Hiroi H, Momoeda M, et al. Expression of retinoic acid-related orphan receptor α and its responsive genes in human endometrium regulated by cholesterol sulfate[J]. J Steroid Biochem Mol Biol, 2012, 128(1/2): 21-28. |
4 | Prah J, Winters A, Chaudhari K, et al. Cholesterol sulfate alters astrocyte metabolism and provides protection against oxidative stress[J]. Brain Res, 2019, 1723: 146378. |
5 | Strott CA, Higashi Y. Cholesterol sulfate in human physiology: what's it all about?[J]. J Lipid Res, 2003, 44(7): 1268-1278. |
6 | Sánchez-Guijo A, Oji V, Hartmann MF, et al. Simultaneous quantification of cholesterol sulfate, androgen sulfates, and progestagen sulfates in human serum by LC-MS/MS[J]. J Lipid Res, 2015, 56(9): 1843-1851. |
7 | Elias PM, Williams ML, Choi EH, et al. Role of cholesterol sulfate in epidermal structure and function: lessons from X-linked ichthyosis[J]. Biochim Biophys Acta, 2014, 1841(3): 353-361. |
8 | Nagata K, Yamazoe Y. Pharmacogenetics of sulfotransferase[J]. Annu Rev Pharmacol Toxicol, 2000, 40: 159-176. |
9 | Her C, Wood TC, Eichler EE, et al. Human hydroxysteroid sulfotransferase SULT2B1: two enzymes encoded by a single chromosome 19 gene[J]. Genomics, 1998, 53(3): 284-295. |
10 | Eckhart L, Tschachler E, Gruber F. Autophagic control of skin aging[J]. Front Cell Dev Biol, 2019, 7: 143. |
11 | Eckhart L, PLJMZeeuwen. The skin barrier: epidermis vs environment[J]. Exp Dermatol, 2018, 27(8): 805-806. |
12 | Feingold KR, Jiang YJ. The mechanisms by which lipids coordinately regulate the formation of the protein and lipid domains of the stratum corneum: role of fatty acids, oxysterols, cholesterol sulfate and ceramides as signaling molecules[J]. Dermatoendocrinol, 2011, 3(2): 113-118. |
13 | Hanley K, Wood L, Ng DC, et al. Cholesterol sulfate stimulates involucrin transcription in keratinocytes by increasing Fra-1, Fra-2, and Jun D[J]. J Lipid Res, 2001, 42(3): 390-398. |
14 | Denning MF, Kazanietz MG, Blumberg PM, et al. Cholesterol sulfate activates multiple protein kinase C isoenzymes and induces granular cell differentiation in cultured murine keratinocytes[J]. Cell Growth Differ, 1995, 6(12): 1619-1626. |
15 | Kawabe S, Ikuta T, Ohba M, et al. Cholesterol sulfate activates transcription of transglutaminase 1 gene in normal human keratinocytes[J]. J Invest Dermatol, 1998, 111(6): 1098-1102. |
16 | Kuroki T, Ikuta T, Kashiwagi M, et al. Cholesterol sulfate, an activator of protein kinase C mediating squamous cell differentiation: a review[J]. Mutat Res, 2000, 462(2/3): 189-195. |
17 | Hanyu O, Nakae H, Miida T, et al. Cholesterol sulfate induces expression of the skin barrier protein filaggrin in normal human epidermal keratinocytes through induction of RORα[J]. Biochem Biophys Res Commun, 2012, 428(1): 99-104. |
18 | Presland RB. Function of filaggrin and caspase-14 in formation and maintenance of the epithelial barrier[J]. Dermatol Sinica, 2009, 27: 1-14. |
19 | Wang F, Beck-García K, Zorzin C, et al. Inhibition of T cell receptor signaling by cholesterol sulfate, a naturally occurring derivative of membrane cholesterol[J]. Nat Immunol, 2016, 17(7): 844-850. |
20 | Ivanisevic J, Epstein AA, Kurczy ME, et al. Brain region mapping using global metabolomics[J]. Chem Biol, 2014, 21(11): 1575-1584. |
21 | Diociaiuti A, Angioni A, Pisaneschi E, et al. X-linked ichthyosis: clinical and molecular findings in 35 Italian patients[J]. Exp Dermatol, 2019, 28(10): 1156-1163. |
22 | 郑晓草, 王剑巧, 曹先伟. X-连锁鱼鳞病[J]. 皮肤科学通报, 2020, 37(1): 36-41. |
23 | Fernandes NF, Janniger CK, Schwartz RA. X-linked ichthyosis: an oculocutaneous genodermatosis[J]. J Am Acad Dermatol, 2010, 62(3): 480-485. |
24 | Cañueto J, Ciria S, Hernández-Martín A, et al. Analysis of the STS gene in 40 patients with recessive X-linked ichthyosis: a high frequency of partial deletions in a Spanish population[J]. J Eur Acad Dermatol Venereol, 2010, 24(10): 1226-1229. |
25 | Elias PM, Williams ML, Feingold KR. Abnormal barrier function in the pathogenesis of ichthyosis: therapeutic implications for lipid metabolic disorders[J]. Clin Dermatol, 2012, 30(3): 311-322. |
26 | Kelly JW. Alternative conformations of amyloidogenic proteins govern their behavior[J]. Curr Opin Struct Biol, 1996, 6(1): 11-17. |
27 | 沈怡君. Aβ蛋白在阿尔兹海默病中的损伤机制以及研究进展[J]. 中国实用神经疾病杂志, 2015, 18(1): 127-129. |
28 | di Paolo G, Kim TW. Linking lipids to Alzheimer's disease: cholesterol and beyond[J]. Nat Rev Neurosci, 2011, 12(5): 284-296. |
29 | Elbassal EA, Liu HY, Morris C, et al. Effects of charged cholesterol derivatives on Aβ40 amyloid formation[J]. J Phys Chem B, 2016, 120(1): 59-68. |
30 | Bi YH, Shi XJ, Zhu JJ, et al. Regulation of cholesterol sulfotransferase SULT2B1b by hepatocyte nuclear factor 4α constitutes a negative feedback control of hepatic gluconeogenesis[J]. Mol Cell Biol, 2018, 38(7): e00654-17. |
31 | Shi XJ, Cheng QQ, Xu LY, et al. Cholesterol sulfate and cholesterol sulfotransferase inhibit gluconeogenesis by targeting hepatocyte nuclear factor 4α[J]. Mol Cell Biol, 2014, 34(3): 485-497. |
32 | Paine MRL, Kim J, Bennett RV, et al. Whole reproductive system non-negative matrix factorization mass spectrometry imaging of an early-stage ovarian cancer mouse model[J]. PLoS One, 2016, 11(5): e0154837. |
33 | Johnson CH, Santidrian AF, LeBoeuf SE, et al. Metabolomics guided pathway analysis reveals link between cancer metastasis, cholesterol sulfate, and phospholipids[J]. Cancer Metab, 2017, 5: 9. |
34 | Turanli B, Karagoz K, Bidkhori G, et al. Multi-omic data interpretation to repurpose subtype specific drug candidates for breast cancer[J]. Front Genet, 2019, 10: 420. |
35 | Yang J, Broman MM, Cooper PO, et al. Distinct expression patterns of SULT2B1b in human prostate epithelium[J]. Prostate, 2019, 79(11): 1256-1266. |
36 | Park S, Song CS, Lin CL, et al. Inhibitory interplay of SULT2B1b sulfotransferase with AKR1C3 aldo-keto reductase in prostate cancer[J]. Endocrinology, 2020, 161(2): bqz042. |
37 | Vickman RE, Crist SA, Kerian K, et al. Cholesterol sulfonation enzyme, SULT2B1b, modulates AR and cell growth properties in prostate cancer[J]. Mol Cancer Res, 2016, 14(9): 776-786. |
38 | Vickman RE, Yang J, Lanman NA, et al. Cholesterol sulfotransferase SULT2B1b modulates sensitivity to death receptor ligand TNFα in castration-resistant prostate cancer[J]. Mol Cancer Res, 2019, 17(6): 1253-1263. |
39 | Yang XM, Du XC, Sun L, et al. SULT2B1b promotes epithelial-mesenchymal transition through activation of the β-catenin/MMP7 pathway in hepatocytes[J]. Biochem Biophys Res Commun, 2019, 510(4): 495-500. |
40 | Hu L, Yang GZ, Zhang Y, et al. Overexpression of SULT2B1b is an independent prognostic indicator and promotes cell growth and invasion in colorectal carcinoma[J]. Lab Invest, 2015, 95(9): 1005-1018. |
41 | Hong WT, Guo FH, Yang MJ, et al. Hydroxysteroid sulfotransferase 2B1 affects gastric epithelial function and carcinogenesis induced by a carcinogenic agent[J]. Lipids Health Dis, 2019, 18(1): 203. |
42 | Hu RK, Huffman KE, Chu M, et al. Quantitative secretomic analysis identifies extracellular protein factors that modulate the metastatic phenotype of non-small cell lung cancer[J]. J Proteome Res, 2016, 15(2): 477-486. |
43 | Samukange V, Yasukawa K, Inouye K. Effects of heparin and cholesterol sulfate on the activity and stability of human matrix metalloproteinase 7[J]. Biosci Biotechnol Biochem, 2014, 78(1): 41-48. |
44 | Yamamoto K, Miyazaki K, Higashi S. Cholesterol sulfate alters substrate preference of matrix metalloproteinase-7 and promotes degradations of pericellular laminin-332 and fibronectin[J]. J Biol Chem, 2010, 285(37): 28862-28873. |
45 | Yamamoto K, Miyazaki K, Higashi S. Pericellular proteolysis by matrix metalloproteinase-7 is differentially modulated by cholesterol sulfate, sulfatide, and cardiolipin[J]. FEBS J, 2014, 281(15): 3346-3356. |
46 | Prior SH, Fulcher YG, Koppisetti RK, et al. Charge-triggered membrane insertion of matrix metalloproteinase-7, supporter of innate immunity and tumors[J]. Structure, 2015, 23(11): 2099-2110. |
47 | Ishikawa T, Kimura Y, Hirano H, et al. Matrix metalloproteinase-7 induces homotypic tumor cell aggregation via proteolytic cleavage of the membrane-bound Kunitz-type inhibitor HAI-1[J]. J Biol Chem, 2017, 292(50): 20769-20784. |
[1] | Yu-sheng LU, Wen-yi YANG, Hai-long MA, Jing-zhou HU. Impact of Ras association domain family 5 on cell migration and invasion of head and neck squamous cell carcinoma [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(6): 717-723. |
[2] | Yun-fang MA, Li-na PAN, Zhen LI, Bei-li GAO, Jia-an HU, Zhi-hong XU. Exploratory study on downregulation of PD-L1 in KRAS G12V-mutant non-small cell lung cancer cells by selumetinib [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(6): 741-748. |
[3] | Sheng CHENG, Yi ZHAO, Yong-chen WANG, Ping HUANG. Meta-analysis of the effect of BRAF gene mutation on the prognosis of colorectal cancer patients with liver metastases after hepatectomy [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(6): 786-792. |
[4] | Jiang-lei MA, Xiao-yao LI, Shi-fu ZHAO, De-jun YANG. Advances in diagnostic methods of clinical staging for gastric cancer [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(6): 821-825. |
[5] | Jian-hua XU, Ping JIANG, Jiong DENG. Expression and significance of ATP-binding cassette superfamily G member 2 in lung cancer [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(6): 830-833. |
[6] | Lu-di YANG, Gao-ming WANG, Ren-hao HU, Xiao-hua JIANG, Ran CUI. Identification of core genes in pancreatic cancer progression by bioinformatics analysis [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(5): 571-578. |
[7] | Jia-ling ZHANG, Feng-chun ZHANG, Ying-chun XU. Research progress in the systemic treatment for breast cancer with brain metastasis [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(5): 671-677. |
[8] | Jing-yan HU, Lin ZHANG, Liang ZHANG. Function of human nucleic acid alkylation damage repair enzyme ALKBH3 in cancer progression and oncotherapy [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(5): 684-689. |
[9] | Qi-sheng GU, Mi-li ZHANG, Can CAO, Ji-kun LI. Association of alternative splicing and tumor immune in gastric cancer based on TCGA data set [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(4): 448-458. |
[10] | Ru-juan BAO, Hui-fang CHEN, Yu DONG, You-qiong YE, Bing SU. Construction of prognostic risk score model of colorectal cancer gene signature based on transcriptome dysregulation [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(3): 285-296. |
[11] | Yan-ru MA, Lin-hua JI, Tian-ying TONG, Yu-qing YAN, Chao-qin SHEN, Xin-yu ZHANG, Ying-ying CAO, Jie HONG, Hao-yan CHEN. Establishment and validation of prognostic prediction model of colorectal cancer based on single-cell RNA sequencing [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(2): 159-165. |
[12] | Zhong-mao FU, Zai LUO, Ze-yin RONG, Jian-ming ZHANG, Teng-fei LI, Zhi-long YU, Chen HUANG. Study on the function and prognosis of circular RNA in colorectal cancer tissues based on high-throughput sequencing [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(2): 187-195. |
[13] | Xiao-bin ZHANG, Peng LIU, Zhi-chao LIU, Yang YANG, Bin LI, Yi-feng SUN, Rong HUA, Xu-feng GUO, Yi HE, Hai-yong GU, Zhi-gang LI. Biological characteristics and surgical treatment results of stage Ⅰ esophageal squamous cell carcinoma [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(2): 202-209. |
[14] | Yuan-xin HUANG, Dong-mei LAI. Application of proteomics to the study of gynecological diseases [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(2): 233-240. |
[15] | Xiao-jun ZHAO, Zhi-gang QIAO, Ting-yu LIANG, Yan-ling AN. Expression of breast cancer susceptibility gene 1 protein in brain gliomas and its influence on the sensitivity of temozolomide [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(1): 118-122. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||