Journal of Shanghai Jiao Tong University (Medical Science) ›› 2023, Vol. 43 ›› Issue (10): 1317-1323.doi: 10.3969/j.issn.1674-8115.2023.10.014
• Review • Previous Articles
QIN Yahan(), ZHANG Ke, ZHANG Mengyu, SHEN Jie, PENG Meiyu()
Received:
2023-01-19
Accepted:
2023-07-07
Online:
2023-10-28
Published:
2023-10-28
Contact:
PENG Meiyu
E-mail:qyh15689089363@163.com;pmy-107@163.com
Supported by:
CLC Number:
QIN Yahan, ZHANG Ke, ZHANG Mengyu, SHEN Jie, PENG Meiyu. Research progress of MDSCs-targeted immunotherapy for pancreatic cancer[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(10): 1317-1323.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2023.10.014
1 | WU J, CAI J T. Dilemma and challenge of immunotherapy for pancreatic cancer[J]. Dig Dis Sci, 2021, 66(2): 359-368. |
2 | TSUCHIKAWA T, TAKEUCHI S, NAKAMURA T, et al. Clinical impact of chemotherapy to improve tumor microenvironment of pancreatic cancer[J]. World J Gastrointest Oncol, 2016, 8(11): 786-792. |
3 | GILLEN S, SCHUSTER T, MEYER ZUM BÜSCHENFELDE C, et al. Preoperative/neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of response and resection percentages[J]. PLoS Med, 2010, 7(4): e1000267. |
4 | SHARMA V, AGGARWAL A, JACOB J, et al. Myeloid-derived suppressor cells: bridging the gap between inflammation and pancreatic adenocarcinoma[J]. Scand J Immunol, 2021, 93(5): e13021. |
5 | SARVEPALLI D, RASHID M U, RAHMAN A U, et al. Gemcitabine: a review of chemoresistance in pancreatic cancer[J]. Crit Rev Oncog, 2019, 24(2): 199-212. |
6 | THYAGARAJAN A, ALSHEHRI M S A, MILLER K L R, et al. Myeloid-derived suppressor cells and pancreatic cancer: implications in novel therapeutic approaches[J]. Cancers, 2019, 11(11): 1627. |
7 | DYSTHE M, PARIHAR R. Myeloid-derived suppressor cells in the tumor microenvironment[J]. Adv Exp Med Biol, 2020, 1224: 117-140. |
8 | KHALED Y S, AMMORI B J, ELKORD E. Increased levels of granulocytic myeloid-derived suppressor cells in peripheral blood and tumour tissue of pancreatic cancer patients[J]. J Immunol Res, 2014, 2014: 879897. |
9 | GARGETT T, CHRISTO S N, HERCUS T R, et al. GM-CSF signalling blockade and chemotherapeutic agents act in concert to inhibit the function of myeloid-derived suppressor cells in vitro[J]. Clin Transl Immunology, 2016, 5(12): e119. |
10 | NAGARAJ S, GABRILOVICH D I. Tumor escape mechanism governed by myeloid-derived suppressor cells[J]. Cancer Res, 2008, 68(8): 2561-2563. |
11 | BRONTE V, BRANDAU S, CHEN S H, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards[J]. Nat Commun, 2016, 7: 12150. |
12 | YOUN J I, NAGARAJ S, COLLAZO M, et al. Subsets of myeloid-derived suppressor cells in tumor-bearing mice[J]. J Immunol, 2008, 181(8): 5791-5802. |
13 | YOUN J I, GABRILOVICH D I. The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity[J]. Eur J Immunol, 2010, 40(11): 2969-2975. |
14 | GABRILOVICH D I, NAGARAJ S. Myeloid-derived suppressor cells as regulators of the immune system[J]. Nat Rev Immunol, 2009, 9(3): 162-174. |
15 | PENG M Y, ZHANG Q, LIU Y Q, et al. Apolipoprotein A-I mimetic peptide L-4F suppresses granulocytic-myeloid-derived suppressor cells in mouse pancreatic cancer[J]. Front Pharmacol, 2020, 11: 576. |
16 | MARVEL D, GABRILOVICH D I. Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected[J]. J Clin Invest, 2015, 125(9): 3356-3364. |
17 | OSIPOV A, SAUNG M T, ZHENG L, et al. Small molecule immunomodulation: the tumor microenvironment and overcoming immune escape[J]. J Immunother Cancer, 2019, 7(1): 224. |
18 | PADOAN A, PLEBANI M, BASSO D. Inflammation and pancreatic cancer: focus on metabolism, cytokines, and immunity[J]. Int J Mol Sci, 2019, 20(3): 676. |
19 | APTE M V, XU Z, POTHULA S, et al. Pancreatic cancer: the microenvironment needs attention too![J]. Pancreatology, 2015, 15(4): S32-S38. |
20 | THAKUR A, SCHALK D, TOMASZEWSKI E, et al. Microenvironment generated during EGFR targeted killing of pancreatic tumor cells by ATC inhibits myeloid-derived suppressor cells through COX2 and PGE2 dependent pathway[J]. J Transl Med, 2013, 11: 35. |
21 | UZUNPARMAK B, SAHIN I H. Pancreatic cancer microenvironment: a current dilemma[J]. Clin Transl Med, 2019, 8(1): 2. |
22 | POREMBKA M R, MITCHEM J B, BELT B A, et al. Pancreatic adenocarcinoma induces bone marrow mobilization of myeloid-derived suppressor cells which promote primary tumor growth[J]. Cancer Immunol Immunother, 2012, 61(9): 1373-1385. |
23 | GABRILOVICH D I, OSTRAND-ROSENBERG S, BRONTE V. Coordinated regulation of myeloid cells by tumours[J]. Nat Rev Immunol, 2012, 12(4): 253-268. |
24 | LI H Q, HAN Y M, GUO Q L, et al. Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1[J]. J Immunol, 2009, 182(1): 240-249. |
25 | SERAFINI P, MGEBROFF S, NOONAN K, et al. Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells[J]. Cancer Res, 2008, 68(13): 5439-5449. |
26 | OSTRAND-ROSENBERG S. Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity[J]. Cancer Immunol Immunother, 2010, 59(10): 1593-1600. |
27 | SZEFEL J, DANIELAK A, KRUSZEWSKI W J. Metabolic pathways of L-arginine and therapeutic consequences in tumors[J]. Adv Med Sci, 2019, 64(1): 104-110. |
28 | RODRÍGUEZ P C, OCHOA A C. Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives[J]. Immunol Rev, 2008, 222: 180-191. |
29 | GALLEGO-ORTEGA D, LEDGER A, RODEN D L, et al. ELF5 drives lung metastasis in luminal breast cancer through recruitment of Gr1+ CD11b+ myeloid-derived suppressor cells[J]. PLoS Biol, 2015, 13(12): e1002330. |
30 | TALMADGE J E, GABRILOVICH D I. History of myeloid-derived suppressor cells[J]. Nat Rev Cancer, 2013, 13(10): 739-752. |
31 | BIAN Z, SHI L, VENKATARAMANI M, et al. Tumor conditions induce bone marrow expansion of granulocytic, but not monocytic, immunosuppressive leukocytes with increased CXCR2 expression in mice[J]. Eur J Immunol, 2018, 48(3): 532-542. |
32 | UMANSKY V, BLATTNER C, GEBHARDT C, et al. The role of myeloid-derived suppressor cells (MDSC) in cancer progression[J]. Vaccines, 2016, 4(4): 36. |
33 | TCYGANOV E, MASTIO J, CHEN E, et al. Plasticity of myeloid-derived suppressor cells in cancer[J]. Curr Opin Immunol, 2018, 51: 76-82. |
34 | HOLOKAI L, CHAKRABARTI J, LUNDY J, et al. Murine- and human-derived autologous organoid/immune cell co-cultures as pre-clinical models of pancreatic ductal adenocarcinoma[J]. Cancers, 2020, 12(12): 3816. |
35 | FARAJZADEH VALILOU S, KESHAVARZ-FATHI M, SILVESTRIS N, et al. The role of inflammatory cytokines and tumor associated macrophages (TAMs) in microenvironment of pancreatic cancer[J]. Cytokine Growth Factor Rev, 2018, 39: 46-61. |
36 | TADMOR T, ATTIAS D, POLLIACK A. Myeloid-derived suppressor cells: their role in haemato-oncological malignancies and other cancers and possible implications for therapy[J]. Br J Haematol, 2011, 153(5): 557-567. |
37 | DONG P, YAN Y, FAN Y J, et al. The role of myeloid-derived suppressor cells in the treatment of pancreatic cancer[J]. Technol Cancer Res Treat, 2022, 21: 15330338221142472. |
38 | HALABY M J, HEZAVEH K, LAMORTE S, et al. GCN2 drives macrophage and MDSC function and immunosuppression in the tumor microenvironment[J]. Sci Immunol, 2019, 4(42): eaax8189. |
39 | LAW A M K, VALDES-MORA F, GALLEGO-ORTEGA D. Myeloid-derived suppressor cells as a therapeutic target for cancer[J]. Cells, 2020, 9(3): 561. |
40 | SUZUKI E, SUN J, KAPOOR V, et al. Gemcitabine has significant immunomodulatory activity in murine tumor models independent of its cytotoxic effects[J]. Cancer Biol Ther, 2007, 6(6): 880-885. |
41 | SEVKO A, MICHELS T, VROHLINGS M, et al. Antitumor effect of paclitaxel is mediated by inhibition of myeloid-derived suppressor cells and chronic inflammation in the spontaneous melanoma model[J]. J Immunol, 2013, 190(5): 2464-2471. |
42 | GHANSAH T, VOHRA N, KINNEY K, et al. Dendritic cell immunotherapy combined with gemcitabine chemotherapy enhances survival in a murine model of pancreatic carcinoma[J]. Cancer Immunol Immunother, 2013, 62(6): 1083-1091. |
43 | MELANI C, SANGALETTI S, BARAZZETTA F M, et al. Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma[J]. Cancer Res, 2007, 67(23): 11438-11446. |
44 | GOEDEGEBUURE P, MITCHEM J B, POREMBKA M R, et al. Myeloid-derived suppressor cells: general characteristics and relevance to clinical management of pancreatic cancer[J]. Curr Cancer Drug Targets, 2011, 11(6): 734-751. |
45 | ISHERWOOD J, ARSHAD A, CHUNG W Y, et al. Myeloid derived suppressor cells are reduced and T regulatory cells stabilised in patients with advanced pancreatic cancer treated with gemcitabine and intravenous omega 3[J]. Ann Transl Med, 2020, 8(5): 172. |
46 | GHIRINGHELLI F, APETOH L. Enhancing the anticancer effects of 5-fluorouracil: current challenges and future perspectives[J]. Biomed J, 2015, 38(2): 111-116. |
47 | VINCENT J, MIGNOT G, CHALMIN F, et al. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity[J]. Cancer Res, 2010, 70(8): 3052-3061. |
48 | ANNELS N E, SHAW V E, GABITASS R F, et al. The effects of gemcitabine and capecitabine combination chemotherapy and of low-dose adjuvant GM-CSF on the levels of myeloid-derived suppressor cells in patients with advanced pancreatic cancer[J]. Cancer Immunol Immunother, 2014, 63(2): 175-183. |
49 | CONDAMINE T, KUMAR V, RAMACHANDRAN I R, et al. ER stress regulates myeloid-derived suppressor cell fate through TRAIL-R-mediated apoptosis[J]. J Clin Invest, 2014, 124(6): 2626-2639. |
50 | DOMINGUEZ G A, CONDAMINE T, MONY S, et al. Selective targeting of myeloid-derived suppressor cells in cancer patients using DS-8273a, an agonistic TRAIL-R2 antibody[J]. Clin Cancer Res, 2017, 23(12): 2942-2950. |
51 | PENG M Y, HUANG B Q, ZHANG Q, et al. Embelin inhibits pancreatic cancer progression by directly inducing cancer cell apoptosis and indirectly restricting IL-6 associated inflammatory and immune suppressive cells[J]. Cancer Lett, 2014, 354(2): 407-416. |
52 | GHANSAH T. A novel strategy for modulation of MDSC to enhance cancer immunotherapy[J]. Oncoimmunology, 2012, 1(6): 984-985. |
53 | VEGLIA F, PEREGO M, GABRILOVICH D. Myeloid-derived suppressor cells coming of age[J]. Nat Immunol, 2018, 19(2): 108-119. |
54 | SONG J, LEE J, KIM J, et al. Pancreatic adenocarcinoma up-regulated factor (PAUF) enhances the accumulation and functional activity of myeloid-derived suppressor cells (MDSCs) in pancreatic cancer[J]. Oncotarget, 2016, 7(32): 51840-51853. |
55 | NAGARAJ S, YOUN J I, WEBER H, et al. Anti-inflammatory triterpenoid blocks immune suppressive function of MDSCs and improves immune response in cancer[J]. Clin Cancer Res, 2010, 16(6): 1812-1823. |
56 | SANCTIS F D, SOLITO S, UGEL S, et al. MDSCs in cancer: conceiving new prognostic and therapeutic targets[J]. Biochim Biophys Acta, 2016, 1865(1): 35-48. |
57 | FLEMING V, HU X Y, WEBER R, et al. Targeting myeloid-derived suppressor cells to bypass tumor-induced immunosuppression[J]. Front Immunol, 2018, 9: 398. |
58 | SANFORD D E, BELT B A, PANNI R Z, et al. Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis[J]. Clin Cancer Res, 2013, 19(13): 3404-3415. |
[1] | ZHOU Wanzhen, TENG Yincheng. Research progress of the role of non-canonical Wnt signaling pathway in ovarian cancer and its potential therapeutic implications [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(8): 1056-1063. |
[2] | MEI Yanqing, HAN Yujie, WENG Wenyun, ZHANG Lei, TANG Yujie. In vitro therapeutic effects and molecular mechanisms of targeted inhibition of CDK12/13 in high-grade gliomas [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(5): 545-559. |
[3] | XU Yinglian, TIAN Jing, ZHANG Xiang, ZHAO Shunying. Research progress in the roles of airway epithelial cells in the pathogenesis of asthma [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(5): 619-623. |
[4] | WEI Lanyi, XUE Xiaochuan, CHEN Junjun, YANG Quanjun, WANG Mengyue, HAN Yonglong. Research progress of tumor-associated macrophages in immune microenvironment and targeted therapy of osteosarcoma [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(5): 624-630. |
[5] | LIU Tiexin, LIN Junqing, ZHENG Xianyou. Research progress of subcellular structure-targeted therapy in spinal cord injury [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(2): 230-236. |
[6] | MA Fangfang, QIN Jiejie, REN Lingjie, TANG Xiaomei, LIU Jia, SHI Minmin, JIANG Lingxi. Establishment of a 3D culture model in vitro of pancreatic cancer primary cells using hydrogel microspheres [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(1): 79-87. |
[7] | HAN Yongqi, HAN Da, XIA Qian, JI Dingkun, TAN Weihong. Aptamer-drug conjugates (ApDCs): new trend for cancer precision therapy [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(9): 1176-1181. |
[8] | XU Jingxuan, DU Shaoqian, CAO Yuan, WANG Hongxia, HUANG Weiyi. MMP14 expression in pancreatic cancer and its correlation with characteristics of tumor immune microenvironment [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(3): 312-322. |
[9] | LI Ruonan, CHEN Xiaoke, XU Yuanyuan, TAN Qiang. Advances in postoperative adjuvant targeted therapy for patients with stage ⅠB-ⅢA non-small cell lung cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(11): 1612-1619. |
[10] | Jing-wei LI, Li-wen WANG, Ling-xi JIANG, Qian ZHAN, Hao CHEN, Bai-yong SHEN. Review of immunosuppressive tumor microenvironment of pancreatic cancer [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(8): 1103-1108. |
[11] | Lu-di YANG, Gao-ming WANG, Ren-hao HU, Xiao-hua JIANG, Ran CUI. Identification of core genes in pancreatic cancer progression by bioinformatics analysis [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(5): 571-578. |
[12] | Jia-ling ZHANG, Feng-chun ZHANG, Ying-chun XU. Research progress in the systemic treatment for breast cancer with brain metastasis [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(5): 671-677. |
[13] | LI Chao, MI Jian-qing, WANG Jin. Advances in Philadelphia chromosome-like acute lymphoblastic leukemia [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(9): 1294-1301. |
[14] | LIANG Yu, JIANG Ming-jie, TIAN Ling. Advances in prostaglandin E2 reprogramming pancreatic cancer microenvironment [J]. , 2019, 39(8): 923-. |
[15] | LI Xiao, WANG Li. Immunomodulatory effect of myeloid-derived suppressor cell and its impact on tumor therapy [J]. , 2019, 39(10): 1204-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||