
Journal of Shanghai Jiao Tong University (Medical Science) ›› 2024, Vol. 44 ›› Issue (6): 788-794.doi: 10.3969/j.issn.1674-8115.2024.06.015
• Review • Previous Articles Next Articles
ZHANG Yong1(
), LI Weihong1, CHENG Zhipeng1, WANG bin1, WANG Siheng1, WANG Yubin1,2(
)
Received:2024-01-09
Accepted:2024-04-12
Online:2024-06-28
Published:2024-06-28
Contact:
WANG Yubin
E-mail:840595873@qq.com;wangyb1980@163.com
Supported by:CLC Number:
ZHANG Yong, LI Weihong, CHENG Zhipeng, WANG bin, WANG Siheng, WANG Yubin. Research status of receptor-interacting protein kinase 1 in regulating cancer progression and immune response[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(6): 788-794.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2024.06.015
| 1 | DEGTEREV A, HUANG Z H, BOYCE M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury[J]. Nat Chem Biol, 2005, 1(2): 112-119. |
| 2 | SHAN B, PAN H L, NAJAFOV A, et al. Necroptosis in development and diseases[J]. Genes Dev, 2018, 32(5/6): 327-340. |
| 3 | DOVEY C M, DIEP J, CLARKE B P, et al. MLKL requires the inositol phosphate code to execute necroptosis[J]. Mol Cell, 2018, 70(5): 936-948.e7. |
| 4 | SEIFERT L, WERBA G, TIWARI S, et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression[J]. Nature, 2016, 532(7598): 245-249. |
| 5 | KONDYLIS V, PASPARAKIS M. RIP kinases in liver cell death, inflammation and cancer[J]. Trends Mol Med, 2019, 25(1): 47-63. |
| 6 | YAN J, WAN P X, CHOKSI S, et al. Necroptosis and tumor progression[J]. Trends Cancer, 2022, 8(1): 21-27. |
| 7 | MIFFLIN L, OFENGEIM D, YUAN J Y. Receptor-interacting protein kinase 1 (RIPK1) as a therapeutic target[J]. Nat Rev Drug Discov, 2020, 19(8): 553-571. |
| 8 | LI W J, YUAN J Y. Targeting RIPK1 kinase for modulating inflammation in human diseases[J]. Front Immunol, 2023, 14: 1159743. |
| 9 | HE S D, WANG X D. RIP kinases as modulators of inflammation and immunity[J]. Nat Immunol, 2018, 19(9): 912-922. |
| 10 | RIEBELING T, KUNZENDORF U, KRAUTWALD S. The role of RHIM in necroptosis[J]. Biochem Soc Trans, 2022, 50(4): 1197-1205. |
| 11 | WU G W, LI D K, LIANG W, et al. PP6 negatively modulates LUBAC-mediated M1-ubiquitination of RIPK1 and c-FLIPL to promote TNFα-mediated cell death[J]. Cell Death Dis, 2022, 13(9): 773. |
| 12 | DRABER P, KUPKA S, REICHERT M, et al. LUBAC-recruited CYLD and A20 regulate gene activation and cell death by exerting opposing effects on linear ubiquitin in signaling complexes[J]. Cell Rep, 2015, 13(10): 2258-2272. |
| 13 | YUAN J Y, AMIN P, OFENGEIM D. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases[J]. Nat Rev Neurosci, 2019, 20(1): 19-33. |
| 14 | DONDELINGER Y, DARDING M, BERTRAND M J, et al. Poly-ubiquitination in TNFR1-mediated necroptosis[J]. Cell Mol Life Sci, 2016, 73(11/12): 2165-2176. |
| 15 | XU D C, JIN T J, ZHU H, et al. TBK1 suppresses RIPK1-driven apoptosis and inflammation during development and in aging[J]. Cell, 2018, 174(6): 1477-1491.e19. |
| 16 | WERTZ I, DIXIT V. A20: a bipartite ubiquitin editing enzyme with immunoregulatory potential[J]. Adv Exp Med Biol, 2014, 809: 1-12. |
| 17 | GONG Y T, FAN Z Y, LUO G P, et al. The role of necroptosis in cancer biology and therapy[J]. Mol Cancer, 2019, 18(1): 100. |
| 18 | LI X M, LI F, ZHANG X X, et al. Caspase-8 auto-cleavage regulates programmed cell death and collaborates with RIPK3/MLKL to prevent lymphopenia[J]. Cell Death Differ, 2022, 29(8): 1500-1512. |
| 19 | SALEH D, NAJJAR M, ZELIC M, et al. Kinase activities of RIPK1 and RIPK3 can direct IFN-β synthesis induced by lipopolysaccharide[J]. J Immunol, 2017, 198(11): 4435-4447. |
| 20 | LINKERMANN A, GREEN D R. Necroptosis[J]. N Engl J Med, 2014, 370(5): 455-465. |
| 21 | LIU T J, ZONG H F, CHEN X Y, et al. Toll-like receptor 4-mediated necroptosis in the development of necrotizing enterocolitis[J]. Pediatr Res, 2022, 91(1): 73-82. |
| 22 | BRISSE M, LY H. Comparative structure and function analysis of the RIG-I-like receptors: RIG-I and MDA5[J]. Front Immunol, 2019, 10: 1586. |
| 23 | ZHANG T, YIN C R, BOYD D F, et al. Influenza virus Z-RNAs induce ZBP1-mediated necroptosis[J]. Cell, 2020, 180(6): 1115-1129.e13. |
| 24 | LIN J, KUMARI S, KIM C, et al. RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation[J]. Nature, 2016, 540(7631): 124-128. |
| 25 | DEGTEREV A, OFENGEIM D, YUAN J Y. Targeting RIPK1 for the treatment of human diseases[J]. Proc Natl Acad Sci U S A, 2019, 116(20): 9714-9722. |
| 26 | DILLON C P, WEINLICH R, RODRIGUEZ D A, et al. RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3[J]. Cell, 2014, 157(5): 1189-1202. |
| 27 | IMANISHI T, UNNO M, YONEDA N, et al. RIPK1 blocks T cell senescence mediated by RIPK3 and caspase-8[J]. Sci Adv, 2023, 9(4): eadd6097. |
| 28 | YATIM N, JUSFORGUES-SAKLANI H, OROZCO S, et al. RIPK1 and NF-κB signaling in dying cells determines cross-priming of CD8⁺ T cells[J]. Science, 2015, 350(6258): 328-334. |
| 29 | MANDAL R, BARRÓN J C, KOSTOVA I, et al. Caspase-8: the double-edged sword[J]. Biochim Biophys Acta Rev Cancer, 2020, 1873(2): 188357. |
| 30 | WU B Y, LI J Y, WANG H, et al. RIPK1 is aberrantly expressed in multiple B-cell cancers and implicated in the underlying pathogenesis[J]. Discov Oncol, 2023, 14(1): 131. |
| 31 | CAO L Y, MU W. Necrostatin-1 and necroptosis inhibition: pathophysiology and therapeutic implications[J]. Pharmacol Res, 2021, 163: 105297. |
| 32 | KATSUYA K, OIKAWA D, IIO K, et al. Small-molecule inhibitors of linear ubiquitin chain assembly complex (LUBAC), HOIPINs, suppress NF- κB signaling[J]. Biochem Biophys Res Commun, 2019, 509(3): 700-706. |
| 33 | WANG Y K, MA N, XU S, et al. PPDPF suppresses the development of hepatocellular carcinoma through TRIM21-mediated ubiquitination of RIPK1[J]. Cell Rep, 2023, 42(4): 112340. |
| 34 | JUNG S Y, PARK J I, JEONG J H, et al. Receptor interacting protein 1 knockdown induces cell death in liver cancer by suppressing STAT3/ATR activation in a p53-dependent manner[J]. Am J Cancer Res, 2022, 12(6): 2594-2611. |
| 35 | YU Y Q, THONN V, PATANKAR J V, et al. SMYD2 targets RIPK1 and restricts TNF-induced apoptosis and necroptosis to support colon tumor growth[J]. Cell Death Dis, 2022, 13(1): 52. |
| 36 | LIN P H, LIN C L, HE R F, et al. TRAF6 regulates the abundance of RIPK1 and inhibits the RIPK1/RIPK3/MLKL necroptosis signaling pathway and affects the progression of colorectal cancer[J]. Cell Death Dis, 2023, 14(1): 6. |
| 37 | BAI W Q, CUI F J, WANG Z H, et al. Receptor-interacting protein kinase 1 (RIPK1) regulates cervical cancer cells via NF-κB-TNF-α pathway: an in vitro study[J]. Transl Oncol, 2023, 36: 101748. |
| 38 | KHAMSEH M E, SHEIKHI A, SHAHSAVARI Z, et al. Evaluation of the expression of necroptosis pathway mediators and its association with tumor characteristics in functional and non-functional pituitary adenomas[J]. BMC Endocr Disord, 2022, 22(1): 1. |
| 39 | PATEL S, WEBSTER J D, VARFOLOMEEV E, et al. RIP1 inhibition blocks inflammatory diseases but not tumor growth or metastases[J]. Cell Death Differ, 2020, 27(1): 161-175. |
| 40 | HÄNGGI K, VASILIKOS L, VALLS A F, et al. RIPK1/RIPK3 promotes vascular permeability to allow tumor cell extravasation independent of its necroptotic function[J]. Cell Death Dis, 2017, 8(2): e2588. |
| 41 | LI Y S, XIONG Y, ZHANG G, et al. Identification of 5-(2,3-dihydro-1H-indol-5-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine derivatives as a new class of receptor-interacting protein kinase 1 (RIPK1) inhibitors, which showed potent activity in a tumor metastasis model[J]. J Med Chem, 2018, 61(24): 11398-11414. |
| 42 | ZHU G W, DU Q, CHEN X, et al. Receptor-interacting serine/threonine-protein kinase 1 promotes the progress and lymph metastasis of gallbladder cancer[J]. Oncol Rep, 2019, 42(6): 2435-2449. |
| 43 | MCCORMICK K D, GHOSH A, TRIVEDI S, et al. Innate immune signaling through differential RIPK1 expression promote tumor progression in head and neck squamous cell carcinoma[J]. Carcinogenesis, 2016, 37(5): 522-529. |
| 44 | CUCHET-LOURENÇO D, ELETTO D, WU C X, et al. Biallelic RIPK1 mutations in humans cause severe immunodeficiency, arthritis, and intestinal inflammation[J]. Science, 2018, 361(6404): 810-813. |
| 45 | LI Y, FÜHRER M, BAHRAMI E, et al. Human RIPK1 deficiency causes combined immunodeficiency and inflammatory bowel diseases[J]. Proc Natl Acad Sci U S A, 2019, 116(3): 970-975. |
| 46 | LALAOUI N, BOYDEN S E, ODA H, et al. Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease[J]. Nature, 2020, 577(7788): 103-108. |
| 47 | TAO P F, SUN J Q, WU Z M, et al. A dominant autoinflammatory disease caused by non-cleavable variants of RIPK1[J]. Nature, 2020, 577(7788): 109-114. |
| 48 | AAES T L, KACZMAREK A, DELVAEYE T, et al. Vaccination with necroptotic cancer cells induces efficient anti-tumor immunity[J]. Cell Rep, 2016, 15(2): 274-287. |
| 49 | CUCOLO L, CHEN Q Z, QIU J Y, et al. The interferon-stimulated gene RIPK1 regulates cancer cell intrinsic and extrinsic resistance to immune checkpoint blockade[J]. Immunity, 2022, 55(4): 671-685.e10. |
| [1] | PAERHATI Nadina, ZHANG Pengshan, XU Yitian, CHEN Yunqi, HUANG Chen. Construction of a truncated cylindromatosis tumor suppressor deubiquitinase plasmid and its regulation of the phenotypes of gastric cancer cells [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(9): 1149-1160. |
| [2] | WANG Jingyi, DENG Jiali, ZHU Yi, DING Xinyi, GUO Jiajing, WANG Zhongling. Experimental study on novel pH-responsive manganese-based nanoprobes for ferroptosis and magnetic resonance imaging in breast cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(9): 1183-1193. |
| [3] | YIN Ziming, WANG Rongqin, YANG Ziyi, LIU Yingbin, CHEN Tao, SHU Yijun, GONG Wei. Graph neural network-based auxiliary diagnostic model for gallbladder cancer on CT imaging [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(9): 1221-1231. |
| [4] | JIANG Yi, HUANG Chenhao, LI Zhiliang, WU Junwei, ZHAO Ren, ZHANG Tao. Effect of preoperative chemotherapy combined with immunotherapy in a colorectal cancer patient with KRAS mutation [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(9): 1256-1260. |
| [5] | HUANG Xin, LIU Jiahui, YE Jingwen, QIAN Wenli, XU Wanxing, WANG Lin. Development and clinical application of a machine learning-driven model for metabolite-based diagnosis of small cell lung cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(8): 1009-1016. |
| [6] | ZHANG Yuqin, AIHEMAITI Yilixiati, WANG Yanli, YANG Zhi, HUANG Jian. Ubiquitination and degradation of RPTPα mediated by MARCH9 [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(8): 957-968. |
| [7] | AIMAITI Muerzhate, ZHANG Yeqian, LIU Tao, BAI Long, ZHANG Haoyu, NI Bo, GUAN Yujing, WANG Shuchang, GU Jiayi, ZHU Chunchao, XIA Xiang, ZHANG Zizhen. A comparative analysis of the short-term efficacy of robotic and laparoscopic proximal gastrectomy combined with double-flap anastomosis in the treatment of early upper gastric cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(7): 874-882. |
| [8] | WANG Rui, YUAN Ying, TAO Xiaofeng. Application value of synthetic magnetic resonance imaging in predicting cervical lymph node metastasis of oral cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(7): 900-909. |
| [9] | YANG Na, LIU Junli, BAI Jing, YANG Siyi, HAN Jiming, ZHANG Huahua. HENMT1 promotes the proliferation and migration of gastric cancer by activating the PI3K-AKT-mTOR signaling pathway [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(6): 717-726. |
| [10] | TANG Kairan, FENG Chengling, HAN Bangmin. Integrated single-cell and transcriptome sequencing to construct a prognostic model of M2 macrophage-related genes in prostate cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(5): 549-561. |
| [11] | YU Kai, SHUAI Zhewei, HUANG Hongjun, LUO Yan. Research progress on the role and mechanisms of microglia in inflammatory diseases of central nervous system [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(5): 630-638. |
| [12] | MAO Chenzhou, ZHANG Ruiyun, CHEN Haige, YIN Fangfei, ZUO Xiaolei. Framework nucleic acid-based linear amplification platform for sensitive detection of bladder cancer-related miRNAs [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(3): 253-260. |
| [13] | DENG Jiali, GUO Jiajing, WANG Jingyi, DING Xinyi, ZHU Yi, WANG Zhongling. Self -assembled drug -loaded nanoprobes for pyroptosis sensitization and chemical exchange saturation transfer imaging in breast cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(3): 271-281. |
| [14] | CHEN Jiaying, CHU Yimin, PENG Haixia. Study on prediction model and influencing factors of progression-free survival in colorectal cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(3): 324-334. |
| [15] | ZOU Peichen, LIU Hongyu, AIHEMAITI· Ayinazhaer, ZHU Liang, TANG Yabin, LEI Huimin. Metabolic profiling of lung cancer cells with acquired resistance to sotorasib [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(2): 138-149. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||