Journal of Shanghai Jiao Tong University (Medical Science) ›› 2024, Vol. 44 ›› Issue (7): 847-858.doi: 10.3969/j.issn.1674-8115.2024.07.006
• Basic research • Previous Articles
WEI Yunxin(), JIANG Xushun, CAI Mengyao, WEN Ruizhi, DU Xiaogang()
Received:
2023-12-15
Accepted:
2024-06-18
Online:
2024-07-28
Published:
2024-07-28
Contact:
DU Xiaogang
E-mail:972478353@qq.com;cqmudxg@163.com
Supported by:
CLC Number:
WEI Yunxin, JIANG Xushun, CAI Mengyao, WEN Ruizhi, DU Xiaogang. Correlation analysis of COMP and autophagy in diabetic nephropathy and its functional verification[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(7): 847-858.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2024.07.006
1 | THOMAS M C, BROWNLEE M, SUSZTAK K, et al. Diabetic kidney disease[J]. Nat Rev Dis Primers, 2015, 1: 15018. |
2 | CAMERON J S. The discovery of diabetic nephropathy: from small print to centre stage[J]. J Nephrol, 2006, 19(Suppl 10): S75-S87. |
3 | ATKINS R C, ZIMMET P. Diabetic kidney disease: act now or pay later[J]. Kidney Int, 2010, 77(5): 375-377. |
4 | ZIYADEH F N, WOLF G. Pathogenesis of the podocytopathy and proteinuria in diabetic glomerulopathy[J]. Curr Diabetes Rev, 2008, 4(1): 39-45. |
5 | MIZUSHIMA N, KOMATSU M. Autophagy: renovation of cells and tissues[J]. Cell, 2011, 147(4): 728-741. |
6 | HE C C, KLIONSKY D J. Regulation mechanisms and signaling pathways of autophagy[J]. Annu Rev Genet, 2009, 43: 67-93. |
7 | KATAYAMA M, KAWAGUCHI T, BERGER M S, et al. DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells[J]. Cell Death Differ, 2007, 14(3): 548-558. |
8 | RACANELLI A C, KIKKERS S A, CHOI A M K, et al. Autophagy and inflammation in chronic respiratory disease[J]. Autophagy, 2018, 14(2): 221-232. |
9 | BRAVO-SAN PEDRO J M, KROEMER G, GALLUZZI L. Autophagy and mitophagy in cardiovascular disease[J]. Circ Res, 2017, 120(11): 1812-1824. |
10 | DUANN P, LIANOS E A, MA J J, et al. Autophagy, innate immunity and tissue repair in acute kidney injury[J]. Int J Mol Sci, 2016, 17(5): 662. |
11 | CHEN W T, HUNG K C, WEN M S, et al. Impaired leukocytes autophagy in chronic kidney disease patients[J]. Cardiorenal Med, 2013, 3(4): 254-264. |
12 | YASUDA-YAMAHARA M, KUME S, TAGAWA A, et al. Emerging role of podocyte autophagy in the progression of diabetic nephropathy[J]. Autophagy, 2015, 11(12): 2385-2386. |
13 | KUME S, THOMAS M C, KOYA D. Nutrient sensing, autophagy, and diabetic nephropathy[J]. Diabetes, 2012, 61(1): 23-29. |
14 | JIANG X S, CHEN X M, WAN J M, et al. Autophagy protects against palmitic acid-induced apoptosis in podocytes in vitro[J]. Sci Rep, 2017, 7: 42764. |
15 | YU S M W, BONVENTRE J V. Acute kidney injury and progression of diabetic kidney disease[J]. Adv Chronic Kidney Dis, 2018, 25(2): 166-180. |
16 | LIN Q S, BANU K, NI Z H, et al. Podocyte autophagy in homeostasis and disease[J]. J Clin Med, 2021, 10(6): 1184. |
17 | YANG D Y, LIVINGSTON M J, LIU Z W, et al. Autophagy in diabetic kidney disease: regulation, pathological role and therapeutic potential[J]. Cell Mol Life Sci, 2018, 75(4): 669-688. |
18 | TAGAWA A, YASUDA M, KUME S, et al. Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy[J]. Diabetes, 2016, 65(3): 755-767. |
19 | JIANG X S, XIANG X Y, CHEN X M, et al. Inhibition of soluble epoxide hydrolase attenuates renal tubular mitochondrial dysfunction and ER stress by restoring autophagic flux in diabetic nephropathy[J]. Cell Death Dis, 2020, 11(5): 385. |
20 | LENOIR O, JASIEK M, HÉNIQUE C, et al. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis[J]. Autophagy, 2015, 11(7): 1130-1145. |
21 | LAPLANTE M, SABATINI D. mTOR signaling in growth control and disease[J]. Cell, 2012, 149(2): 274-293. |
22 | WULLSCHLEGER S, LOEWITH R, HALL M N. TOR signaling in growth and metabolism[J]. Cell, 2006, 124(3): 471-484. |
23 | HAY N, SONENBERG N. Upstream and downstream of mTOR[J]. Genes Dev, 2004, 18(16): 1926-1945. |
24 | INOKI K, MORI H, WANG J Y, et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice[J]. J Clin Invest, 2011, 121(6): 2181-2196. |
25 | XIAO T L, GUAN X, NIE L, et al. Rapamycin promotes podocyte autophagy and ameliorates renal injury in diabetic mice[J]. Mol Cell Biochem, 2014, 394(1): 145-154. |
26 | GÖDEL M, HARTLEBEN B, HERBACH N, et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice[J]. J Clin Invest, 2011, 121(6): 2197-2209. |
27 | CINÀ D P, ONAY T, PALTOO A, et al. Inhibition of MTOR disrupts autophagic flux in podocytes[J]. J Am Soc Nephrol, 2012, 23(3): 412-420. |
28 | POSEY K L, COUSTRY F, HECHT J T. Cartilage oligomeric matrix protein: compopathies and beyond[J]. Matrix Biol, 2018, 71/72: 161-173. |
29 | LI Q, WANG C, WANG Y F, et al. HSCs-derived COMP drives hepatocellular carcinoma progression by activating MEK/ERK and PI3K/AKT signaling pathways[J]. J Exp Clin Cancer Res, 2018, 37(1): 231. |
30 | ASANUMA K, MUNDEL P. The role of podocytes in glomerular pathobiology[J]. Clin Exp Nephrol, 2003, 7(4): 255-259. |
31 | LI Y, PAN Y, CAO S R, et al. Podocyte EGFR inhibits autophagy through upregulation of Rubicon in type 2 diabetic nephropathy[J]. Diabetes, 2021, 70(2): 562-576. |
32 | KAWACHI H, MIYAUCHI N, SUZUKI K, et al. Role of podocyte slit diaphragm as a filtration barrier[J]. Nephrology (Carlton), 2006, 11(4): 274-281. |
33 | ANIL KUMAR P, WELSH G I, SALEEM M A, et al. Molecular and cellular events mediating glomerular podocyte dysfunction and depletion in diabetes mellitus[J]. Front Endocrinol, 2014, 5: 151. |
34 | LIN J S, SUSZTAK K. Podocytes: the weakest link in diabetic kidney disease?[J]. Curr Diab Rep, 2016, 16(5): 45. |
35 | NAGATA M. Podocyte injury and its consequences[J]. Kidney Int, 2016, 89(6): 1221-1230. |
36 | WIGGINS J E, GOYAL M, SANDEN S K, et al. Podocyte hypertrophy, “adaptation,” and “decompensation” associated with glomerular enlargement and glomerulosclerosis in the aging rat: prevention by calorie restriction[J]. J Am Soc Nephrol, 2005, 16(10): 2953-2966. |
37 | PAGTALUNAN M E, MILLER P L, JUMPING-EAGLE S, et al. Podocyte loss and progressive glomerular injury in type II diabetes[J]. J Clin Invest, 1997, 99(2): 342-348. |
38 | SUSZTAK K, RAFF A C, SCHIFFER M, et al. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy[J]. Diabetes, 2006, 55(1): 225-233. |
39 | YI M X, ZHANG L, LIU Y, et al. Autophagy is activated to protect against podocyte injury in adriamycin-induced nephropathy[J]. Am J Physiol Renal Physiol, 2017, 313(1): F74-F84. |
40 | PARZYCH K R, KLIONSKY D J. An overview of autophagy: morphology, mechanism, and regulation[J]. Antioxid Redox Signal, 2014, 20(3): 460-473. |
41 | QI Y Y, ZHOU X J, CHENG F J, et al. Increased autophagy is cytoprotective against podocyte injury induced by antibody and interferon-α in lupus nephritis[J]. Ann Rheum Dis, 2018, 77(12): 1799-1809. |
42 | SUN M Y, WANG S J, LI X Q, et al. CXCL6 promotes renal interstitial fibrosis in diabetic nephropathy by activating JAK/STAT3 signaling pathway[J]. Front Pharmacol, 2019, 10: 224. |
43 | ZHENG S T, SHEN T X, LIU Q, et al. CXCL6 fuels the growth and metastases of esophageal squamous cell carcinoma cells both in vitro and in vivo through upregulation of PD-L1 via activation of STAT3 pathway[J]. J Cell Physiol, 2021, 236(7): 5373-5386. |
44 | JUN W D, MAKINO H. Inflammation and the pathogenesis of diabetic nephropathy[J]. Clin Sci (Lond), 2013, 124(3): 139-152. |
45 | SAMSU N. Diabetic nephropathy: challenges in pathogenesis, diagnosis, and treatment[J]. Biomed Res Int, 2021, 2021: 1497449. |
46 | THOMAS M C, GROOP P H, TRYGGVASON K. Towards understanding the inherited susceptibility for nephropathy in diabetes[J]. Curr Opin Nephrol Hypertens, 2012, 21(2): 195-202. |
47 | FREEDMAN B I, BOSTROM M, DAEIHAGH P, et al. Genetic factors in diabetic nephropathy[J]. Clin J Am Soc Nephrol, 2007, 2(6): 1306-1316. |
48 | VUGA L J, MILOSEVIC J, PANDIT K, et al. Cartilage oligomeric matrix protein in idiopathic pulmonary fibrosis[J]. PLoS One, 2013, 8(12): e83120. |
49 | MAGDALENO F, ARRIAZU E, DE GALARRETA M R, et al. Cartilage oligomeric matrix protein participates in the pathogenesis of liver fibrosis[J]. J Hepatol, 2016, 65(5): 963-971. |
50 | HOLDEN P, MEADOWS R S, CHAPMAN K L, et al. Cartilage oligomeric matrix protein interacts with type IX collagen, and disruptions to these interactions identify a pathogenetic mechanism in a bone dysplasia family[J]. J Biol Chem, 2001, 276(8): 6046-6055. |
51 | TAN K M, DUQUETTE M, JOACHIMIAK A, et al. The crystal structure of the signature domain of cartilage oligomeric matrix protein: implications for collagen, glycosaminoglycan and integrin binding[J]. FASEB J, 2009, 23(8): 2490-2501. |
52 | CHEN F H, HERNDON M E, PATEL N, et al. Interaction of cartilage oligomeric matrix protein/thrombospondin 5 with aggrecan[J]. J Biol Chem, 2007, 282(34): 24591-24598. |
53 | DI CESARE P E, CHEN F S, MOERGELIN M, et al. Matrix-matrix interaction of cartilage oligomeric matrix protein and fibronectin[J]. Matrix Biol, 2002, 21(5): 461-470. |
54 | FU Y, KONG W. Cartilage oligomeric matrix protein: matricellular and matricrine signaling in cardiovascular homeostasis and disease[J]. Curr Vasc Pharmacol, 2017, 15(3): 186-196. |
55 | WISŁOWSKA M, JABŁOŃSKA B. Serum cartilage oligomeric matrix protein (COMP) in rheumatoid arthritis and knee osteoarthritis[J]. Clin Rheumatol, 2005, 24(3): 278-284. |
56 | HUA W, HUANG H Z, TAN L T, et al. CD36 mediated fatty acid-induced podocyte apoptosis via oxidative stress[J]. PLoS One, 2015, 10(5): e0127507. |
57 | HUANG Y Q, XIA J H, ZHENG J G, et al. Deficiency of cartilage oligomeric matrix protein causes dilated cardiomyopathy[J]. Basic Res Cardiol, 2013, 108(5): 374. |
[1] | WANG Xin, WANG Xiaoxia, LI Yanqing, ZHENG Yongxin, WU Jie, REN Meng, JIA Xiangdong, XU Tianxiang. Expression and clinical significance of geranylgeranyl diphosphate synthase1 (GGPS1) in lung squamous cell carcinoma [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(3): 312-324. |
[2] | DENG Qingsong, ZHANG Changqing, TAO Shicong. Exploration of the relationship between nicotinamide metabolism-related genes and osteoarthritis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(2): 145-160. |
[3] | WANG Ying, PING Lifeng, LIU Tongtong, LIU Shanshan, LIU Lei. Effect of neferine on diabetic nephropathy by regulating SDF-1/CXCR4 signal pathway [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(2): 183-195. |
[4] | JIA Junjie, XING Haifan, ZHANG Qunzi, LIU Qiye, WANG Niansong, FAN Ying. Renal protective effect and mechanism research of hypoxia inducible factor-1α inhibitor YC-1 in diabetic nephropathy mice [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(9): 1089-1098. |
[5] | GAO Nan, HAO Gem, MA Bingjie, JIN Tian, MA Ke, LIU Xiaoming. Translocator protein activates autophagy in diabetic neuropathic pain rats via regulation of the Keap1/Nrf2/HO-1 signaling [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(8): 988-996. |
[6] | DU Shaoqian, TAO Mengyu, CAO Yuan, WANG Hongxia, HU Xiaoqu, FAN Guangjian, ZANG Lijuan. CXCL9 expression in breast cancer and its correlation with the characteristics of tumor immunoinfiltration [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(7): 860-872. |
[7] | WU Qiqi, WANG Hao, LIN Li, YAN Bo, ZHANG Shulin. miR-185-5p facilitates intracellular Mycobacterium growth via inhibiting macrophage autophagy [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(6): 699-708. |
[8] | JIN Fangquan, FAN Chenghu, TANG Xiaodong, CHEN Yantong, QI Bingxian. Research progress in the relationship between mitochondrial dysfunction and osteoporosis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(6): 761-767. |
[9] | LI Qinglin, WANG Wenbo, LIU Wei. Bioinformatics analysis of pathological mechanism of degenerated tendon via stress deprivation [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(5): 560-570. |
[10] | CHEN Yixin, CHENG Lizhen, LIN Yijia, MIAO Ya. Change of transcription factor EB activity and autophagy in hippocampus of type 2 diabetic encephalopathy mice [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(2): 162-170. |
[11] | LI Siyuan, HE Shen, LI Huafang. Recent advance in autophagy-related pathways and key biomarkers in major depressive disorder [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(10): 1324-1331. |
[12] | WU Jiajin, ZHONG Chen, LI Dawei, CHEN Ruoyang, QU Junwen, ZHANG Ming. Role of methyltransferase like 3 regulating pri-miR-21 methylation in renal fibrosis of diabetes nephropathy [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(1): 1-7. |
[13] | WANG Xuemin, WANG Yanan, NIU Aiqin, YE Ying, LI Fei. MicroRNA-30b-5p inhibits autophagy in ovarian granulosa cells in polycystic ovary syndrome rats by targeting Atg5 [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(1): 20-28. |
[14] | HAN Xiaxia, JIANG Yang, GU Shuangshuang, DAI Dai, SHEN Nan. Transcriptomic analysis of metabolic characteristics of the immune cells in systemic lupus erythematosus patients [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(9): 1197-1207. |
[15] | JIN Bu, YUAN Ying, CHEN Wanyu, XU Hudong, HUANG Xiaolei, HE Jialu, YU Hong. Involvement of miRNA target genes in esophageal squamous cell carcinoma through ubiquitination based on GEO database [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(4): 464-471. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||