
JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE) ›› 2022, Vol. 42 ›› Issue (2): 235-240.doi: 10.3969/j.issn.1674-8115.2022.02.016
• Review • Previous Articles Next Articles
Rong ZHANG1(
), Li LU1(
), Yaxin WANG2, Wenqian DONG1, Yu ZHANG1, Jian ZHOU2(
)
Received:2021-08-31
Online:2022-02-28
Published:2022-01-24
Contact:
Jian ZHOU
E-mail:517713910016@sjtu.edu.cn;zhoujian@sjtu.edu.cn
Supported by:CLC Number:
Rong ZHANG, Li LU, Yaxin WANG, Wenqian DONG, Yu ZHANG, Jian ZHOU. Research progress in the relationship between abnormal blood glucose fluctuation and cognitive dysfunction of patients with diabetes mellitus[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2022, 42(2): 235-240.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2022.02.016
| 1 | 中华医学会内分泌学分会, 余学锋, 赵家军, 等. 糖尿病患者认知功能障碍专家共识[J].中华糖尿病杂志, 2021, 13(7): 678-694. |
| 2 | XU W, CARACCIOLO B, WANG H X, et al. Accelerated progression from mild cognitive impairment to dementia in people with diabetes[J]. Diabetes, 2010, 59(11): 2928-2935. |
| 3 | ZHENG F F, YAN L, YANG Z C, et al. HbA1c, diabetes and cognitive decline: The English Longitudinal Study of Ageing[J]. Diabetologia, 2018, 61(4): 839-848. |
| 4 | ZHENG B, SU B W, PRICE G, et al. Glycemic control, diabetic complications, and risk of dementia in patients with diabetes: results from a large U.K. Cohort study[J]. Diabetes Care, 2021, 44(7): 1556-1563. |
| 5 | XIA W Q, LUO Y, CHEN Y C, et al. Glucose fluctuations are linked to disrupted brain functional architecture and cognitive impairment[J]. J Alzheimers Dis, 2020, 74(2): 603-613. |
| 6 | PALTA P, CARLSON M C, CRUM R M, et al. Diabetes and cognitive decline in older adults: the Ginkgo Evaluation of Memory Study[J]. J Gerontol A Biol Sci Med Sci, 2017, 73(1): 123-130. |
| 7 | BIESSELS G J, JANSSEN J, VAN DEN BERG E, et al. Rationale and design of the CAROLINA®-cognition substudy: a randomised controlled trial on cognitive outcomes of linagliptin versus glimepiride in patients with type 2 diabetes mellitus[J]. BMC Neurol, 2018, 18(1): 7. |
| 8 | YANG X, CHEN Y Q, ZHANG W S, et al. Association between inflammatory biomarkers and cognitive dysfunction analyzed by MRI in diabetes patients[J]. Diabetes Metab Syndr Obes, 2020, 13: 4059-4065. |
| 9 | WANG H, TAN L, WANG H F, et al. Magnetic resonance spectroscopy in Alzheimer's disease: systematic review and meta-analysis[J]. J Alzheimers Dis, 2015, 46(4): 1049-1070. |
| 10 | ALOTAIBI A, TENCH C, STEVENSON R, et al. Investigating brain microstructural alterations in type 1 and type 2 diabetes using diffusion tensor imaging: a systematic review[J]. Brain Sci, 2021, 11(2): 140. |
| 11 | HU B, YAN L F, SUN Q, et al. Disturbed neurovascular coupling in type 2 diabetes mellitus patients: evidence from a comprehensive fMRI analysis[J]. Neuroimage Clin, 2019, 22: 101802. |
| 12 | DANNE T, NIMRI R, BATTELINO T, et al. International consensus on use of continuous glucose monitoring[J]. Diabetes Care, 2017, 40(12): 1631-1640. |
| 13 | BATTELINO T, DANNE T, BERGENSTAL R M, et al. Clinical targets for continuous glucose monitoring data interpretation: recommendations from the international consensus on time in range[J]. Diabetes Care, 2019, 42(8): 1593-1603. |
| 14 | LU J Y, MA X J, ZHANG L, et al. Glycemic variability modifies the relationship between time in range and hemoglobin A1c estimated from continuous glucose monitoring: a preliminary study[J]. Diabetes Res Clin Pract, 2020, 161: 108032. |
| 15 | LU J Y, MA X J, SHEN Y, et al. Time in range is associated with carotid intima-media thickness in type 2 diabetes[J]. Diabetes Technol Ther, 2020, 22(2): 72-78. |
| 16 | LU J Y, MA X J, ZHOU J, et al. Association of time in range, as assessed by continuous glucose monitoring, with diabetic retinopathy in type 2 diabetes[J]. Diabetes Care, 2018, 41(11): 2370-2376. |
| 17 | BECK R W, BERGENSTAL R M, RIDDLESWORTH T D, et al. Validation of time in range as an outcome measure for diabetes clinical trials[J]. Diabetes Care, 2019, 42(3): 400-405. |
| 18 | MAYEDA L, KATZ R, AHMAD I, et al. Glucose time in range and peripheral neuropathy in type 2 diabetes mellitus and chronic kidney disease[J]. BMJ Open Diabetes Res Care, 2020, 8(1): e000991. |
| 19 | GUO Q Y, ZANG P, XU S Y, et al. Time in range, as a novel metric of glycemic control, is reversely associated with presence of diabetic cardiovascular autonomic neuropathy independent of HbA1c in Chinese type 2 diabetes[J]. J Diabetes Res, 2020, 2020: 5817074. |
| 20 | RIZZO M R, MARFELLA R, BARBIERI M, et al. Relationships between daily acute glucose fluctuations and cognitive performance among aged type 2 diabetic patients[J]. Diabetes Care, 2010, 33(10): 2169-2174. |
| 21 | ZHONG Y, ZHANG X Y, MIAO Y, et al. The relationship between glucose excursion and cognitive function in aged type 2 diabetes patients[J]. Biomed Environ Sci, 2012, 25(1): 1-7. |
| 22 | DUNGAN K M, BUSE J B, LARGAY J, et al. 1, 5-anhydroglucitol and postprandial hyperglycemia as measured by continuous glucose monitoring system in moderately controlled patients with diabetes[J]. Diabetes Care, 2006, 29(6): 1214-1219. |
| 23 | RAWLINGS A M, SHARRETT A R, MOSLEY T H, et al. Glucose peaks and the risk of dementia and 20-year cognitive decline[J]. Diabetes Care, 2017, 40(7): 879-886. |
| 24 | QUINCOZES-SANTOS A, BOBERMIN L D, DE ASSIS A M, et al. Fluctuations in glucose levels induce glial toxicity with glutamatergic, oxidative and inflammatory implications[J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(1): 1-14. |
| 25 | MAIORINO M I, CASCIANO O, VOLPE E D, et al. Reducing glucose variability with continuous subcutaneous insulin infusion increases endothelial progenitor cells in type 1 diabetes: an observational study[J]. Endocrine, 2016, 52(2): 244-252. |
| 26 | WANG H, DENG J L, CHEN L, et al. Acute glucose fluctuation induces inflammation and neurons apoptosis in hippocampal tissues of diabetic rats[J]. J Cell Biochem, 2019. doi: 10.1002/jcb.29523. |
| 27 | HSIEH C F, LIU C K, LEE C T, et al. Acute glucose fluctuation impacts microglial activity, leading to inflammatory activation or self-degradation[J]. Sci Rep, 2019, 9(1): 840. |
| 28 | KSHIRSAGAR V, THINGORE C, JUVEKAR A. Insulin resistance: a connecting link between Alzheimer's disease and metabolic disorder[J]. Metab Brain Dis, 2021, 36(1): 67-83. |
| 29 | NGUYEN T T, TA Q T H, NGUYEN T K O, et al. Type 3 diabetes and its role implications in Alzheimer's disease[J]. Int J Mol Sci, 2020, 21(9): 3165. |
| 30 | 刘涵, 侯新国, 陈丽. 关于2型糖尿病患者认知功能障碍机制的研究进展[J]. 中华糖尿病杂志, 2021, 13(7): 737-739. |
| 31 | JO D, YOON G, SONG J. Role of exendin-4 in brain insulin resistance, mitochondrial function, and neurite outgrowth in neurons under palmitic acid-induced oxidative stress[J]. Antioxidants (Basel), 2021, 10(1): 78. |
| 32 | CUKIERMAN-YAFFE T, GERSTEIN H C, COLHOUN H M, et al. Effect of dulaglutide on cognitive impairment in type 2 diabetes: an exploratory analysis of the REWIND trial[J]. Lancet Neurol, 2020, 19(7): 582-590. |
| 33 | ZHANG Z, ZHANG B, WANG X, et al. Olfactory dysfunction mediates adiposity in cognitive impairment of type 2 diabetes: insights from clinical and functional neuroimaging studies[J]. Diabetes Care, 2019, 42(7): 1274-1283. |
| 34 | BIESSELS G J, VERHAGEN C, JANSSEN J, et al. Effect of linagliptin on cognitive performance in patients with type 2 diabetes and cardiorenal comorbidities: the CARMELINA Randomized Trial[J]. Diabetes Care, 2019, 42(10): 1930-1938. |
| 35 | ATES BULUT E, SAHIN ALAK Z Y, DOKUZLAR O, et al. Cognitive and metabolic outcomes of vildagliptin addition to the therapy in patients with type 2 diabetes mellitus: 26 week follow-up study[J]. Arch Gerontol Geriatr, 2020, 88: 104013. |
| 36 | HIERRO-BUJALANCE C, INFANTE-GARCIA C, MARCO ADEL, et al. Empagliflozin reduces vascular damage and cognitive impairment in a mixed murine model of Alzheimer's disease and type 2 diabetes[J]. Alzheimers Res Ther, 2020, 12(1): 40. |
| 37 | PERNA S, MAINARDI M, ASTRONE P, et al. 12-month effects of incretins versus SGLT2-Inhibitors on cognitive performance and metabolic profile. A randomized clinical trial in the elderly with type-2 diabetes mellitus[J]. Clin Pharmacol, 2018, 10: 141-151. |
| 38 | CUKIERMAN-YAFFE T, BOSCH J, DIAZ R, et al. Effects of basal insulin glargine and omega-3 fatty acid on cognitive decline and probable cognitive impairment in people with dysglycaemia: a substudy of the ORIGIN trial[J]. Lancet Diabetes Endocrinol, 2014, 2(7): 562-572. |
| 39 | WEINSTEIN G, DAVIS-PLOURDE K L, CONNER S, et al. Association of metformin, sulfonylurea and insulin use with brain structure and function and risk of dementia and Alzheimer's disease: pooled analysis from 5 cohorts[J]. PLoS One, 2019, 14(2): e0212293. |
| 40 | SAMARAS K, MAKKAR S, CRAWFORD J D, et al. Metformin use is associated with slowed cognitive decline and reduced incident dementia in older adults with type 2 diabetes: the Sydney Memory and Ageing Study[J]. Diabetes Care, 2020, 43(11): 2691-2701. |
| 41 | DE LA MONTE S M, TONG M, WANDS J R. The 20-year voyage aboard the journal of Alzheimer's disease: docking at 'type 3 diabetes', environmental/exposure factors, pathogenic mechanisms, and potential treatments[J]. J Alzheimers Dis, 2018, 62(3): 1381-1390. |
| 42 | XUE M, XU W, OU Y N, et al. Diabetes mellitus and risks of cognitive impairment and dementia: a systematic review and meta-analysis of 144 prospective studies[J]. Ageing Res Rev, 2019, 55: 100944. |
| 43 | BURNS D K, ALEXANDER R C, WELSH-BOHMER K A, et al. Safety and efficacy of pioglitazone for the delay of cognitive impairment in people at risk of Alzheimer's disease (TOMMORROW): a prognostic biomarker study and a phase 3, randomised, double-blind, placebo-controlled trial[J]. Lancet Neurol, 2021, 20(7): 537-547. |
| [1] | HUANG Yinghe, ZHAO Guanyu, SUN Yang, HOU Jianji, ZUO Yong. Research progress on macrophage metabolic regulation in wound healing of diabetes mellitus type 2 [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(6): 792-799. |
| [2] | LIAN Mingzhu, ZHANG Changxiao, SHENG Kai, GUO Meng, FANG Shuyu. Predictive value of geriatric nutritional risk index for pulmonary infections in hospitalized elderly patients with type 2 diabetes mellitus [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(4): 452-458. |
| [3] | LIN Yijia, CHENG Lizhen, HU Tingjun, MIAO Ya. Causal relationship between type 2 diabetes mellitus and cognitive impairment based on Mendelian randomization [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(2): 204-210. |
| [4] | LIU Meizhi, WANG Ziyang, JIANG Yaning, MI Meng, SUN Yongning. Effects of sennoside A on atherosclerotic plaque formation and expression of 5-hydroxytryptamine signal moleculars in mice with diabetes mellitus type 2 [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(8): 991-998. |
| [5] | DU Yage, LU Yanhui, AN Yu, SONG Ying, ZHENG Jie. Research progress in mechanisms of gut microbiota in diabetic cognitive impairment and its targeted intervention [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(4): 494-500. |
| [6] | ZHANG Xinyan, LI Han, RAN Hui, SU Qing, ZHANG Hongmei. Correlation between serum SUMO1 level and hypertriglyceridemia in type 2 diabetes mellitus patients [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(10): 1266-1272. |
| [7] | WU Qian, LI Huating. Progress of olfactory changes in metabolic diseases and the mechanisms [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(1): 131-136. |
| [8] | WU Lingheng, CHEN Jianxiong, ZHANG Mengjiao, SHA Lei, CAO Mengmeng, SHEN Cuiqin, DU Lianfang, LI Zhaojun. A study of the effect of suboptimal glycemic control on subclinical myocardial systolic function in patients with T2DM [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(8): 1024-1031. |
| [9] | LIU Qianruo, FANG Zichen, WU Yuhan, ZHONG Xianxin, GUO Muhe, JIA Jie. Research progress in the relationship between gut microbia and its metabolites and gestational diabetes mellitus [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(5): 641-647. |
| [10] | ZHANG Yue, QU Lei, GU Qin, ZHU Yiqing, MA Liying, SUN Wenguang. Effect of continuous positive urine ketone body on clinical outcomes of pregnant women with gestational diabetes mellitus and newborn [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(3): 314-319. |
| [11] | GAO Xiong, ZHANG Qiuxia, YANG Miaomiao, LUO Wei, WANG Yuegang, XIU Jiancheng. Causal relationship between atrial fibrillation and cognitive impairment: a Mendelian randomization study [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(11): 1359-1365. |
| [12] | JIA Weiping. New progress and prospects of blood glucose monitoring technology [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(9): 1171-1175. |
| [13] | LI Wen, LI Yuan, YE Haiyun, ZHANG Xiaoxiao, QIAO Tong, LI Pin. Observation on early microvascular changes in macular area of the fundus in children with type 1 diabetes mellitus [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(9): 1311-1314. |
| [14] | WANG Jie, WU Hui, LU Lingpeng, YANG Kefeng, ZHU Jie, ZHOU Hengyi, YAO Die, GAO Ya, FENG Yuting, LIU Yuhong, JIA Jie. Dynamic changes in gut microbiota of women with gestational diabetes mellitus and the correlation with blood glucose, blood lipid and diet [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(9): 1336-1346. |
| [15] | GAO Fei, LU Yu, DONG Shuqin, YANG Liu, WU Shaohua, WEI Jing. Predictive value of fibroblast growth factor 19 subgroup in early pregnancy on gestational diabetes mellitus [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(7): 898-903. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||