Journal of Shanghai Jiao Tong University (Medical Science) ›› 2024, Vol. 44 ›› Issue (2): 271-277.doi: 10.3969/j.issn.1674-8115.2024.02.014
• Review • Previous Articles
Received:
2023-08-21
Accepted:
2023-12-11
Online:
2024-02-28
Published:
2024-03-25
Contact:
YU Jiwei
E-mail:jiangshuang0406@163.com;jenniferyu919@126.com
CLC Number:
JIANG Shuang, YU Jiwei. Progress of research on m6A demethylases in gastric cancer[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(2): 271-277.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2024.02.014
1 | SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. |
2 | TUCK M T. Partial purification of a 6-methyladenine mRNA methyltransferase which modifies internal adenine residues[J]. Biochem J, 1992, 288(Pt 1): 233-240. |
3 | WANG X, HE C. Dynamic RNA modifications in posttranscriptional regulation[J]. Mol Cell, 2014, 56(1): 5-12. |
4 | OERUM S, MEYNIER V, CATALA M, et al. A comprehensive review of m6A/m6Am RNA methyltransferase structures[J]. Nucleic Acids Res, 2021, 49(13): 7239-7255. |
5 | LEE Y, CHOE J, PARK O H, et al. Molecular mechanisms driving mRNA degradation by m6A modification[J]. Trends Genet, 2020, 36(3): 177-188. |
6 | FRYE M, HARADA B T, BEHM M, et al. RNA modifications modulate gene expression during development[J]. Science, 2018, 361(6409): 1346-1349. |
7 | CHEN X Y, ZHANG J, ZHU J S. The role of m6A RNA methylation in human cancer[J]. Mol Cancer, 2019, 18(1): 103. |
8 | YUE B, SONG C L, YANG L X, et al. METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition and metastasis of gastric cancer[J]. Mol Cancer, 2019, 18(1): 142. |
9 | WANG Q, CHEN C, DING Q Q, et al. METTL3-mediated m6A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance[J]. Gut, 2020, 69(7): 1193-1205. |
10 | ZHANG C, ZHANG M Q, GE S, et al. Reduced m6A modification predicts malignant phenotypes and augmented Wnt/PI3K-Akt signaling in gastric cancer[J]. Cancer Med, 2019, 8(10): 4766-4781. |
11 | LIU N, ZHANG C, ZHANG L. WTAP-involved the m6A modification of lncRNA FAM83H-AS1 accelerates the development of gastric cancer[J]. Mol Biotechnol, 2023.DOI:10.1007/s12033-023-00810-2. |
12 | LIU Y, DA M. Wilms tumor 1 associated protein promotes epithelial mesenchymal transition of gastric cancer cells by accelerating TGF-β and enhances chemoradiotherapy resistance[J]. J Cancer Res Clin Oncol, 2023, 149(7): 3977-3988. |
13 | BAI X W, WONG C C, PAN Y S, et al. Loss of YTHDF1 in gastric tumors restores sensitivity to antitumor immunity by recruiting mature dendritic cells[J]. J Immunother Cancer, 2022, 10(2): e003663. |
14 | LIU T, YANG S, CHENG Y P, et al. The N6-methyladenosine (m6A) methylation gene YTHDF1 reveals a potential diagnostic role for gastric cancer[J]. Cancer Manag Res, 2020, 12: 11953-11964. |
15 | CHEN W, HE Q J, LIU J J, et al. PLAGL2 promotes snail expression and gastric cancer progression via UCA1/miR-145-5p/YTHDF1 axis[J]. Carcinogenesis, 2023, 44(4): 328-340. |
16 | YANG H, HU Y R, WENG M Z, et al. Hypoxia inducible lncRNA-CBSLR modulates ferroptosis through m6A-YTHDF2-dependent modulation of CBS in gastric cancer[J]. J Adv Res, 2022, 37: 91-106. |
17 | SHEN X D, ZHAO K, XU L M, et al. YTHDF2 inhibits gastric cancer cell growth by regulating FOXC2 signaling pathway[J]. Front Genet, 2020, 11: 592042. |
18 | HUANG Y, YAN J L, LI Q, et al. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5[J]. Nucleic Acids Res, 2015, 43(1): 373-384. |
19 | ZHOU J, WAN J, GAO X W, et al. Dynamic m6A mRNA methylation directs translational control of heat shock response[J]. Nature, 2015, 526(7574): 591-594. |
20 | WANG X, LU Z K, GOMEZ A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability[J]. Nature, 2014, 505(7481): 117-120. |
21 | WANG X, ZHAO B S, ROUNDTREE I A, et al. N6-methyladenosine modulates messenger RNA translation efficiency[J]. Cell, 2015, 161(6): 1388-1399. |
22 | LIU N, DAI Q, ZHENG G, et al. N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions[J]. Nature, 2015, 518(7540): 560-564. |
23 | UEDA Y, OOSHIO I, FUSAMAE Y, et al. AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells[J]. Sci Rep, 2017, 7: 42271. |
24 | JIA G F, FU Y, ZHAO X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nat Chem Biol, 2011, 7(12): 885-887. |
25 | LI Y, WU K, QUAN W, et al. The dynamics of FTO binding and demethylation from the m6A motifs[J]. RNA Biol, 2019, 16(9): 1179-1189. |
26 | MAUER J, LUO X B, BLANJOIE A, et al. Reversible methylation of m6Am in the 5' cap controls mRNA stability[J]. Nature, 2017, 541(7637): 371-375. |
27 | WEI J B, LIU F G, LU Z K, et al. Differential m6A, m6Am, and m1A demethylation mediated by FTO in the cell nucleus and cytoplasm[J]. Mol Cell, 2018, 71(6): 973-985.e5. |
28 | DINA C, MEYRE D, GALLINA S, et al. Variation in FTO contributes to childhood obesity and severe adult obesity[J]. Nat Genet, 2007, 39(6): 724-726. |
29 | SCUTERI A, SANNA S, CHEN W M, et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits[J]. PLoS Genet, 2007, 3(7): e115. |
30 | LI Y, SU R, DENG X, et al. FTO in cancer: functions, molecular mechanisms, and therapeutic implications[J]. Trends Cancer, 2022, 8(7): 598-614. |
31 | ZHENG G Q, DAHL J A, NIU Y M, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J]. Mol Cell, 2013, 49(1): 18-29. |
32 | TANG B, YANG Y H, KANG M, et al. m6A demethylase ALKBH5 inhibits pancreatic cancer tumorigenesis by decreasing WIF-1 RNA methylation and mediating Wnt signaling[J]. Mol Cancer, 2020, 19(1): 3. |
33 | QU J W, YAN H M, HOU Y F, et al. RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential[J]. J Hematol Oncol, 2022, 15(1): 8. |
34 | JIANG Y, WAN Y C, GONG M, et al. RNA demethylase ALKBH5 promotes ovarian carcinogenesis in a simulated tumour microenvironment through stimulating NF-κB pathway[J]. J Cell Mol Med, 2020, 24(11): 6137-6148. |
35 | HU Y Y, GONG C L, LI Z B, et al. Demethylase ALKBH5 suppresses invasion of gastric cancer via PKMYT1 m6A modification[J]. Mol Cancer, 2022, 21(1): 34. |
36 | CHEN Z J, QI M J, SHEN B, et al. Transfer RNA demethylase ALKBH3 promotes cancer progression via induction of tRNA-derived small RNAs[J]. Nucleic Acids Res, 2019, 47(5): 2533-2545. |
37 | SHIMURA T, KANDIMALLA R, OKUGAWA Y, et al. Novel evidence for m6A methylation regulators as prognostic biomarkers and FTO as a potential therapeutic target in gastric cancer[J]. Br J Cancer, 2022, 126(2): 228-237. |
38 | ZHANG L, HOU Y H, ASHKTORAB H, et al. The impact of C-MYC gene expression on gastric cancer cell[J]. Mol Cell Biochem, 2010, 344(1-2): 125-135. |
39 | YANG Z, JIANG X D, ZHANG Z H, et al. HDAC3-dependent transcriptional repression of FOXA2 regulates FTO/m6A/MYC signaling to contribute to the development of gastric cancer[J]. Cancer Gene Ther, 2021, 28(1-2): 141-155. |
40 | SU R, DONG L, LI C Y, et al. R-2HG exhibits anti-tumor activity by targeting FTO/m6A/MYC/CEBPA signaling[J]. Cell, 2018, 172(1-2): 90-105.e23. |
41 | GUO C M, CHU H J, GONG Z H, et al. HOXB13 promotes gastric cancer cell migration and invasion via IGF-1R upregulation and subsequent activation of PI3K/AKT/mTOR signaling pathway[J]. Life Sci, 2021, 278: 119522. |
42 | GUAN K L, LIU X, LI J H, et al. Expression status and prognostic value of m6A-associated genes in gastric cancer[J]. J Cancer, 2020, 11(10): 3027-3040. |
43 | GE L C, ZHANG N, CHEN Z J, et al. Level of N6-methyladenosine in peripheral blood RNA: a novel predictive biomarker for gastric cancer[J]. Clin Chem, 2020, 66(2): 342-351. |
44 | FENG S T, QIU G Q, YANG L H, et al. Omeprazole improves chemosensitivity of gastric cancer cells by m6A demethylase FTO-mediated activation of mTORC1 and DDIT3 up-regulation[J]. Biosci Rep, 2021, 41(1): BSR20200842. |
45 | ZHANG Y, GAO L X, WANG W, et al. m6A demethylase fat mass and obesity-associated protein regulates cisplatin resistance of gastric cancer by modulating autophagy activation through ULK1[J]. Cancer Sci, 2022, 113(9): 3085-3096. |
46 | YU H, ZHAO K, ZENG H, et al. N6-methyladenosine (m6A) methyltransferase WTAP accelerates the Warburg effect of gastric cancer through regulating HK2 stability[J]. Biomed Pharmacother, 2021, 133: 111075. |
47 | ZHOU Y, WANG Q, DENG H F, et al. N6-methyladenosine demethylase FTO promotes growth and metastasis of gastric cancer via m6A modification of caveolin-1 and metabolic regulation of mitochondrial dynamics[J]. Cell Death Dis, 2022, 13(1): 72. |
48 | ZHANG J, GUO S, PIAO H Y, et al. ALKBH5 promotes invasion and metastasis of gastric cancer by decreasing methylation of the lncRNA NEAT1[J]. J Physiol Biochem, 2019, 75(3): 379-389. |
49 | ZHANG C Z, ZHI W I, LU H Q, et al. Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells[J]. Oncotarget, 2016, 7(40): 64527-64542. |
50 | KONISHI N, NAKAMURA M, ISHIDA E, et al. High expression of a new marker PCA-1 in human prostate carcinoma[J]. Clin Cancer Res, 2005, 11(14): 5090-5097. |
51 | YAMATO I, SHO M, SHIMADA K, et al. PCA-1/ALKBH3 contributes to pancreatic cancer by supporting apoptotic resistance and angiogenesis[J]. Cancer Res, 2012, 72(18): 4829-4839. |
52 | PILŽYS T, MARCINKOWSKI M, KUKWA W, et al. ALKBH overexpression in head and neck cancer: potential target for novel anticancer therapy[J]. Sci Rep, 2019, 9(1): 13249. |
53 | TASAKI M, SHIMADA K, KIMURA H, et al. ALKBH3, a human AlkB homologue, contributes to cell survival in human non-small-cell lung cancer[J]. Br J Cancer, 2011, 104(4): 700-706. |
54 | WOO H H, CHAMBERS S K. Human ALKBH3-induced m1A demethylation increases the CSF-1 mRNA stability in breast and ovarian cancer cells[J]. Biochim Biophys Acta Gene Regul Mech, 2019, 1862(1): 35-46. |
[1] | WU Jiajin, ZHONG Chen, LI Dawei, CHEN Ruoyang, QU Junwen, ZHANG Ming. Role of methyltransferase like 3 regulating pri-miR-21 methylation in renal fibrosis of diabetes nephropathy [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(1): 1-7. |
[2] | HAN Ting, LÜ Chunxin, ZHUO Meng, XIA Qing, LIU Tengfei, WU Xiuqi, LIN Xiaolin, XIAO Xiuying. Related factors and prognostic analysis of adverse events of immunotherapy in advanced gastric cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(8): 1053-1061. |
[3] | CHEN Bin, CUI Hongquan, YANG Yijin, XU Haiyan, ZHANG Ling. Construction of a prediction model of immune-related long non-coding RNA in gastric cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(10): 1394-1403. |
[4] | Jiang-lei MA, Xiao-yao LI, Shi-fu ZHAO, De-jun YANG. Advances in diagnostic methods of clinical staging for gastric cancer [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(6): 821-825. |
[5] | Jing-yan HU, Lin ZHANG, Liang ZHANG. Function of human nucleic acid alkylation damage repair enzyme ALKBH3 in cancer progression and oncotherapy [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(5): 684-689. |
[6] | Qi-sheng GU, Mi-li ZHANG, Can CAO, Ji-kun LI. Association of alternative splicing and tumor immune in gastric cancer based on TCGA data set [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(4): 448-458. |
[7] | Jian-xiao SHEN, Wan-peng WANG, Xing-hua SHAO, Jing-kui WU, Shu LI, Xia-jing CHE, Zhao-hui NI. Changes of m6A methylation in renal tissue during cisplatin-induced acute injury [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(12): 1603-1611. |
[8] | Ben YUE, Gao-ming WANG, Lu-di YANG, Ran CUI, Feng-rong YU. Construction and application value of prognosis-associated miRNA prediction model in gastric cancer patients [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(11): 1436-1445. |
[9] | ZHANG Jing. Inhibitory effect of toosendanin on gastric cancer cells BGC-823 by downregulating circDLST [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(9): 1202-1206. |
[10] | LÜ Heng-yu, HUANG Chen, XIA Xiang, ZHAO Gang. Establishment of a nomogram model predicting risk factors of postoperative complications after radical gastrectomy for gastric cancer [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(7): 894-900. |
[11] | DOU Min1, 2, ZHENG Ying-xia2, HAN Li2, ZHAO Qian1. Role and mechanism of PRMT4 in genesis and progression of gastric cancer [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(5): 609-618. |
[12] | YU Zhi-long, RONG Ze-yin, LUO Zai, ZHANG Jian-ming, HUANG Chen. Identification of differentially expressed lncRNA in human gastric cancer tissues based on high-throughput RNA sequencing [J]. , 2019, 39(9): 955-. |
[13] | YUAN Yuan, MEI Jun. Effects and mechanisms of glutamic-pyruvic transaminase 2 on cisplatin resistance in gastric cancer [J]. , 2019, 39(10): 1134-. |
[14] | SUN Ying1, HU Mei-jie2, GU Wei1, LI Jian1, WANG Ji1, ZHENG Xiong1. Expression and clinical significance of long-chain non-coding RNA lincRNA-BBOX1-2 in gastric cancer [J]. , 2019, 39(10): 1178-. |
[15] | ZHAO Xue1, 2*, WU Lin1*, GU Qin3. Expression of lactamase β in gastric cancer and its clinical significance [J]. , 2018, 38(10): 1212-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||