
Journal of Shanghai Jiao Tong University (Medical Science) ›› 2024, Vol. 44 ›› Issue (9): 1169-1181.doi: 10.3969/j.issn.1674-8115.2024.09.012
• Clinical research • Previous Articles Next Articles
WU Qizhen(
), LIU Qiming(
), CHAI Yezi, TAO Zhengyu, WANG Yinan, GUO Xinning, JIANG Meng(
), PU Jun(
)
Received:2024-01-29
Accepted:2024-06-04
Online:2024-09-28
Published:2024-09-28
Contact:
JIANG Meng,PU Jun
E-mail:wuqizhen@sjtu.edu.cn;090503liu@sjtu.edu.cn;jiangmeng0919@163.com;pujun310@hotmail.com
Supported by:CLC Number:
WU Qizhen, LIU Qiming, CHAI Yezi, TAO Zhengyu, WANG Yinan, GUO Xinning, JIANG Meng, PU Jun. Evaluation of machine learning prediction of altered inflammatory metabolic state after neoadjuvant therapy for breast cancer[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(9): 1169-1181.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2024.09.012
| Indicator | All (n=232) | Patient before neoadjuvant therapy (n=135) | Patient after neoadjuvant therapy (n=97) |
|---|---|---|---|
| Demographic parameter | |||
| Age/year | 47.00 (40.00, 55.00) | 46.00 (39.00, 54.50) | 48.00 (40.00, 56.00) |
| Height/m | 1.60 (1.58, 1.65) | 1.60 (1.58, 1.65) | 1.60 (1.58, 1.65) |
| Weight/kg | 60.00 (54.00, 67.78) | 59.00 (55.00, 66.25) | 60.00 (54.00, 68.00) |
| BMI/ (kg·m-2) | 22.87 (21.10, 25.39) | 22.66 (21.09, 24.96) | 23.10 (21.10, 25.50) |
| Systolic blood pressue/mmHg | 122.70±13.65 | 124.77±13.47 | 119.81±13.45 |
| Diastolic blood pressure/mmHg | 77.15±8.72 | 77.59±7.84 | 76.54±9.83 |
| Heart rate/ (beat ·min-1) | 78.19±5.56 | 77.63±5.32 | 78.96±5.87 |
| Accompanied by lymph node metastasis/n(%) | 72 (31.0) | 44 (32.6) | 28 (28.9) |
| Tumor location/n(%) | |||
| Left side | 113 (48.7) | 68 (50.4) | 45 (46.4) |
| Right side | 116 (50.0) | 65 (48.1) | 51 (52.6) |
| Bilateral | 3 (1.3) | 2 (1.5) | 1 (1.0) |
| Neoadjuvant treatment/n(%) | |||
| Paclitaxel+cisplatin | 26 (26.8) | ‒ | 26 (26.8) |
| Paclitaxel+cisplatin+trastuzumab | 21 (21.6) | ‒ | 21 (21.6) |
| Paclitaxel+cisplatin+apatinib | 35 (36.1) | ‒ | 35 (36.1) |
| Paclitaxel+cisplatin+pyrotinib | 15 (15.5) | ‒ | 15 (15.5) |
| Cardiovascular risk factor/n(%) | |||
| Coronary heart disease | 0 (0) | 0 (0) | 0 (0) |
| Hypertension | 52 (22.4) | 21 (15.6) | 31 (31.0) |
| Type 2 diabetes | 14 (6.0) | 6 (4.4) | 8 (8.2) |
| Hyperlipidemia | 26 (11.2) | 10 (7.4) | 16 (16.5) |
| Smoking | 0 (0) | 0 (0) | 0 (0) |
| Electrocardiographic parameter/n(%) | |||
| ST-T change | 0 (0) | 0 (0) | 2 (2.0) |
| QTc prolongation | 0 (0) | 0 (0) | 0 (0) |
| Echocardiographic parameter | |||
| AOD/mm | 30.00 (28.00, 32.00) | 30.00 (28.00, 32.00) | 31.00 (28.00, 32.00) |
| LAD/mm | 33.44±4.31 | 33.30±4.14 | 33.64±4.54 |
| LVEDD/mm | 44.62±3.30 | 44.66±3.35 | 44.57±3.24 |
| LVESD/mm | 28.00 (27.00, 30.00) | 28.00 (27.00, 30.00) | 29.00 (27.00, 30.00) |
| IVS/mm | 8.00 (7.00, 9.00) | 8.00 (7.00, 9.00) | 8.00 (7.00, 9.00) |
| LVPWT/mm | 8.00 (7.00, 8.00) | 8.00 (7.00, 8.00) | 8.00 (7.00, 9.00) |
| FS/% | 36.00 (34.00, 38.00) | 36.00 (34.00, 38.00) | 37.00 (35.00, 38.00) |
| EF/% | 65.00 (63.00, 68.00) | 65.00 (63.00, 68.00) | 66.00 (63.00, 69.00) |
| Laboratory examination parameter | |||
| WBC/ (×109·L-1) | 5.11 (4.04, 6.56) | 5.65 (4.68, 6.86) | 4.44 (3.50, 5.79)① |
| HB/ (g·L-1) | 120.00 (105.00, 129.00) | 127.00 (120.00, 133.00) | 105.00 (97.00, 117.00)① |
| HCT | 0.36 (0.32, 0.39) | 0.38 (0.36, 0.40) | 0.32 (0.29, 0.35)① |
| ST2/ (ng·mL-1) | 18.14 (13.83, 24.86) | 18.38 (13.75, 25.36) | 18.11 (14.25, 24.13) |
| BNP/ (pg·mL-1) | 19.00 (12.00, 32.00) | 19.00 (12.00, 31.00) | 21.00 (15.00, 35.00) |
| NT-proBNP/ (pg·mL-1) | 24.04 (10.00, 42.58) | 24.42 (10.00, 41.58) | 23.95 (10.48, 46.28) |
| TNI/ (ng·mL-1) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0.01) |
| hsCRP/ (mg·L-1) | 0.71 (0.32, 1.41) | 0.70 (0.32, 1.42) | 0.86 (0.34, 1.40) |
| TC/ (mmol·L-1) | 4.48 (3.91, 5.16) | 4.52 (3.98, 5.24) | 4.42 (3.85, 4.99) |
| TAG/ (mmol·L-1) | 1.35 (0.86, 2.04) | 1.02 (0.74, 1.66) | 1.75 (1.27, 2.40)① |
| HDL/ (mmol·L-1) | 1.10 (0.87, 1.32) | 1.24 (1.04, 1.45) | 0.87 (0.75, 1.03)① |
| LDL/ (mmol·L-1) | 3.34 (2.82, 3.98) | 3.21 (2.76, 3.92) | 3.47 (2.94, 4.12) |
| NHDL/ (mmol·L-1) | 2.52 (2.16, 3.13) | 2.60 (2.21, 3.20) | 2.41 (2.05, 2.91)② |
| FPG/ (mmol·L-1) | 4.95 (4.74, 5.26) | 4.88 (4.69, 5.24) | 5.05 (4.83, 5.29)④ |
| GOT/ (mmol·L-1) | 20.00 (16.00, 26.00) | 17.00 (14.00, 23.00) | 22.00 (19.00, 29.75) |
| GPT/ (mmol·L-1) | 19.00 (13.00, 29.50) | 15.00 (11.00, 27.00) | 24.00 (17.00, 34.00) |
| γ-GT/ (mmol·L-1) | 21.00 (14.00, 40.00) | 18.00 (12.00, 32.00) | 33.50 (17.00, 47.00) |
| IL-1β/ (pg·mL-1) | 5.00 (5.00, 5.00) | 5.00 (5.00, 5.00) | 5.00 (5.00, 5.00) |
| IL-2R/ (U·mL-1) | 330.00 (270.75, 424.75) | 295.00 (249.50, 369.50) | 399.00 (322.00, 508.00)① |
| IL-6/ (pg·mL-1) | 3.15 (2.21, 4.25) | 2.97 (2.12, 3.74) | 3.66 (2.68, 4.89)⑤ |
| IL-8/ (pg·mL-1) | 11.30 (7.72, 18.95) | 13.20 (8.81, 21.10) | 9.84 (7.06, 15.20)③ |
| IL-10/ (pg·mL-1) | 5.00 (5.00, 5.00) | 5.00 (5.00, 5.00) | 5.00 (5.00, 5.00) |
| TNF-α/ (pg·mL-1) | 6.53 (5.26, 7.86) | 6.01 (5.00, 7.02) | 7.33 (6.03, 8.60)① |
Tab 1 All feature variable information of patients with breast cancer before and after neoadjuvant therapy
| Indicator | All (n=232) | Patient before neoadjuvant therapy (n=135) | Patient after neoadjuvant therapy (n=97) |
|---|---|---|---|
| Demographic parameter | |||
| Age/year | 47.00 (40.00, 55.00) | 46.00 (39.00, 54.50) | 48.00 (40.00, 56.00) |
| Height/m | 1.60 (1.58, 1.65) | 1.60 (1.58, 1.65) | 1.60 (1.58, 1.65) |
| Weight/kg | 60.00 (54.00, 67.78) | 59.00 (55.00, 66.25) | 60.00 (54.00, 68.00) |
| BMI/ (kg·m-2) | 22.87 (21.10, 25.39) | 22.66 (21.09, 24.96) | 23.10 (21.10, 25.50) |
| Systolic blood pressue/mmHg | 122.70±13.65 | 124.77±13.47 | 119.81±13.45 |
| Diastolic blood pressure/mmHg | 77.15±8.72 | 77.59±7.84 | 76.54±9.83 |
| Heart rate/ (beat ·min-1) | 78.19±5.56 | 77.63±5.32 | 78.96±5.87 |
| Accompanied by lymph node metastasis/n(%) | 72 (31.0) | 44 (32.6) | 28 (28.9) |
| Tumor location/n(%) | |||
| Left side | 113 (48.7) | 68 (50.4) | 45 (46.4) |
| Right side | 116 (50.0) | 65 (48.1) | 51 (52.6) |
| Bilateral | 3 (1.3) | 2 (1.5) | 1 (1.0) |
| Neoadjuvant treatment/n(%) | |||
| Paclitaxel+cisplatin | 26 (26.8) | ‒ | 26 (26.8) |
| Paclitaxel+cisplatin+trastuzumab | 21 (21.6) | ‒ | 21 (21.6) |
| Paclitaxel+cisplatin+apatinib | 35 (36.1) | ‒ | 35 (36.1) |
| Paclitaxel+cisplatin+pyrotinib | 15 (15.5) | ‒ | 15 (15.5) |
| Cardiovascular risk factor/n(%) | |||
| Coronary heart disease | 0 (0) | 0 (0) | 0 (0) |
| Hypertension | 52 (22.4) | 21 (15.6) | 31 (31.0) |
| Type 2 diabetes | 14 (6.0) | 6 (4.4) | 8 (8.2) |
| Hyperlipidemia | 26 (11.2) | 10 (7.4) | 16 (16.5) |
| Smoking | 0 (0) | 0 (0) | 0 (0) |
| Electrocardiographic parameter/n(%) | |||
| ST-T change | 0 (0) | 0 (0) | 2 (2.0) |
| QTc prolongation | 0 (0) | 0 (0) | 0 (0) |
| Echocardiographic parameter | |||
| AOD/mm | 30.00 (28.00, 32.00) | 30.00 (28.00, 32.00) | 31.00 (28.00, 32.00) |
| LAD/mm | 33.44±4.31 | 33.30±4.14 | 33.64±4.54 |
| LVEDD/mm | 44.62±3.30 | 44.66±3.35 | 44.57±3.24 |
| LVESD/mm | 28.00 (27.00, 30.00) | 28.00 (27.00, 30.00) | 29.00 (27.00, 30.00) |
| IVS/mm | 8.00 (7.00, 9.00) | 8.00 (7.00, 9.00) | 8.00 (7.00, 9.00) |
| LVPWT/mm | 8.00 (7.00, 8.00) | 8.00 (7.00, 8.00) | 8.00 (7.00, 9.00) |
| FS/% | 36.00 (34.00, 38.00) | 36.00 (34.00, 38.00) | 37.00 (35.00, 38.00) |
| EF/% | 65.00 (63.00, 68.00) | 65.00 (63.00, 68.00) | 66.00 (63.00, 69.00) |
| Laboratory examination parameter | |||
| WBC/ (×109·L-1) | 5.11 (4.04, 6.56) | 5.65 (4.68, 6.86) | 4.44 (3.50, 5.79)① |
| HB/ (g·L-1) | 120.00 (105.00, 129.00) | 127.00 (120.00, 133.00) | 105.00 (97.00, 117.00)① |
| HCT | 0.36 (0.32, 0.39) | 0.38 (0.36, 0.40) | 0.32 (0.29, 0.35)① |
| ST2/ (ng·mL-1) | 18.14 (13.83, 24.86) | 18.38 (13.75, 25.36) | 18.11 (14.25, 24.13) |
| BNP/ (pg·mL-1) | 19.00 (12.00, 32.00) | 19.00 (12.00, 31.00) | 21.00 (15.00, 35.00) |
| NT-proBNP/ (pg·mL-1) | 24.04 (10.00, 42.58) | 24.42 (10.00, 41.58) | 23.95 (10.48, 46.28) |
| TNI/ (ng·mL-1) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0.01) |
| hsCRP/ (mg·L-1) | 0.71 (0.32, 1.41) | 0.70 (0.32, 1.42) | 0.86 (0.34, 1.40) |
| TC/ (mmol·L-1) | 4.48 (3.91, 5.16) | 4.52 (3.98, 5.24) | 4.42 (3.85, 4.99) |
| TAG/ (mmol·L-1) | 1.35 (0.86, 2.04) | 1.02 (0.74, 1.66) | 1.75 (1.27, 2.40)① |
| HDL/ (mmol·L-1) | 1.10 (0.87, 1.32) | 1.24 (1.04, 1.45) | 0.87 (0.75, 1.03)① |
| LDL/ (mmol·L-1) | 3.34 (2.82, 3.98) | 3.21 (2.76, 3.92) | 3.47 (2.94, 4.12) |
| NHDL/ (mmol·L-1) | 2.52 (2.16, 3.13) | 2.60 (2.21, 3.20) | 2.41 (2.05, 2.91)② |
| FPG/ (mmol·L-1) | 4.95 (4.74, 5.26) | 4.88 (4.69, 5.24) | 5.05 (4.83, 5.29)④ |
| GOT/ (mmol·L-1) | 20.00 (16.00, 26.00) | 17.00 (14.00, 23.00) | 22.00 (19.00, 29.75) |
| GPT/ (mmol·L-1) | 19.00 (13.00, 29.50) | 15.00 (11.00, 27.00) | 24.00 (17.00, 34.00) |
| γ-GT/ (mmol·L-1) | 21.00 (14.00, 40.00) | 18.00 (12.00, 32.00) | 33.50 (17.00, 47.00) |
| IL-1β/ (pg·mL-1) | 5.00 (5.00, 5.00) | 5.00 (5.00, 5.00) | 5.00 (5.00, 5.00) |
| IL-2R/ (U·mL-1) | 330.00 (270.75, 424.75) | 295.00 (249.50, 369.50) | 399.00 (322.00, 508.00)① |
| IL-6/ (pg·mL-1) | 3.15 (2.21, 4.25) | 2.97 (2.12, 3.74) | 3.66 (2.68, 4.89)⑤ |
| IL-8/ (pg·mL-1) | 11.30 (7.72, 18.95) | 13.20 (8.81, 21.10) | 9.84 (7.06, 15.20)③ |
| IL-10/ (pg·mL-1) | 5.00 (5.00, 5.00) | 5.00 (5.00, 5.00) | 5.00 (5.00, 5.00) |
| TNF-α/ (pg·mL-1) | 6.53 (5.26, 7.86) | 6.01 (5.00, 7.02) | 7.33 (6.03, 8.60)① |
| Single feature | Model | AUC | Accuracy | Precision rate | Recall | F1 score |
|---|---|---|---|---|---|---|
| WBC | RF | 0.715 | 0.603 | 0.656 | 0.636 | 0.646 |
| GB | 0.755 | 0.655 | 0.659 | 0.818 | 0.730 | |
| SVM | 0.767 | 0.690 | 0.683 | 0.848 | 0.757 | |
| DT | 0.655 | 0.569 | 0.643 | 0.545 | 0.590 | |
| KNN | 0.787 | 0.690 | 0.703 | 0.788 | 0.743 | |
| HB | RF | 0.835 | 0.845 | 0.853 | 0.879 | 0.866 |
| GB | 0.816 | 0.759 | 0.788 | 0.788 | 0.788 | |
| SVM | 0.906 | 0.810 | 0.824 | 0.848 | 0.836 | |
| DT | 0.748 | 0.759 | 0.788 | 0.788 | 0.788 | |
| KNN | 0.846 | 0.793 | 0.862 | 0.758 | 0.806 | |
| HDL | RF | 0.872 | 0.810 | 0.824 | 0.848 | 0.836 |
| GB | 0.853 | 0.828 | 0.829 | 0.879 | 0.853 | |
| SVM | 0.889 | 0.845 | 0.833 | 0.909 | 0.870 | |
| DT | 0.818 | 0.759 | 0.771 | 0.818 | 0.794 | |
| KNN | 0.892 | 0.828 | 0.829 | 0.879 | 0.853 | |
| IL-2R | RF | 0.709 | 0.672 | 0.684 | 0.788 | 0.732 |
| GB | 0.721 | 0.655 | 0.710 | 0.667 | 0.688 | |
| SVM | 0.731 | 0.690 | 0.683 | 0.848 | 0.757 | |
| DT | 0.627 | 0.638 | 0.676 | 0.697 | 0.687 | |
| KNN | 0.719 | 0.655 | 0.651 | 0.848 | 0.737 | |
| IL-8 | RF | 0.672 | 0.603 | 0.692 | 0.545 | 0.610 |
| GB | 0.661 | 0.690 | 0.727 | 0.727 | 0.727 | |
| SVM | 0.330 | 0.569 | 0.569 | 1.000 | 0.725 | |
| DT | 0.650 | 0.672 | 0.733 | 0.667 | 0.698 | |
| KNN | 0.475 | 0.500 | 0.553 | 0.636 | 0.592 |
Tab 2 Comparison of the predictive performance of the five models for single-feature variables in the test set for patients with breast cancer before and after neoadjuvant therapy
| Single feature | Model | AUC | Accuracy | Precision rate | Recall | F1 score |
|---|---|---|---|---|---|---|
| WBC | RF | 0.715 | 0.603 | 0.656 | 0.636 | 0.646 |
| GB | 0.755 | 0.655 | 0.659 | 0.818 | 0.730 | |
| SVM | 0.767 | 0.690 | 0.683 | 0.848 | 0.757 | |
| DT | 0.655 | 0.569 | 0.643 | 0.545 | 0.590 | |
| KNN | 0.787 | 0.690 | 0.703 | 0.788 | 0.743 | |
| HB | RF | 0.835 | 0.845 | 0.853 | 0.879 | 0.866 |
| GB | 0.816 | 0.759 | 0.788 | 0.788 | 0.788 | |
| SVM | 0.906 | 0.810 | 0.824 | 0.848 | 0.836 | |
| DT | 0.748 | 0.759 | 0.788 | 0.788 | 0.788 | |
| KNN | 0.846 | 0.793 | 0.862 | 0.758 | 0.806 | |
| HDL | RF | 0.872 | 0.810 | 0.824 | 0.848 | 0.836 |
| GB | 0.853 | 0.828 | 0.829 | 0.879 | 0.853 | |
| SVM | 0.889 | 0.845 | 0.833 | 0.909 | 0.870 | |
| DT | 0.818 | 0.759 | 0.771 | 0.818 | 0.794 | |
| KNN | 0.892 | 0.828 | 0.829 | 0.879 | 0.853 | |
| IL-2R | RF | 0.709 | 0.672 | 0.684 | 0.788 | 0.732 |
| GB | 0.721 | 0.655 | 0.710 | 0.667 | 0.688 | |
| SVM | 0.731 | 0.690 | 0.683 | 0.848 | 0.757 | |
| DT | 0.627 | 0.638 | 0.676 | 0.697 | 0.687 | |
| KNN | 0.719 | 0.655 | 0.651 | 0.848 | 0.737 | |
| IL-8 | RF | 0.672 | 0.603 | 0.692 | 0.545 | 0.610 |
| GB | 0.661 | 0.690 | 0.727 | 0.727 | 0.727 | |
| SVM | 0.330 | 0.569 | 0.569 | 1.000 | 0.725 | |
| DT | 0.650 | 0.672 | 0.733 | 0.667 | 0.698 | |
| KNN | 0.475 | 0.500 | 0.553 | 0.636 | 0.592 |
| Multi-feature | Model | AUC | Accuracy | Precision rate | Recall | F1 value |
|---|---|---|---|---|---|---|
| WBC+HB+HDL | RF | 0.928 | 0.914 | 0.938 | 0.909 | 0.923 |
| GB | 0.900 | 0.776 | 0.885 | 0.697 | 0.780 | |
| SVM | 0.941 | 0.897 | 0.909 | 0.909 | 0.909 | |
| DT | 0.799 | 0.793 | 0.862 | 0.758 | 0.806 | |
| KNN | 0.907 | 0.897 | 0.886 | 0.939 | 0.912 | |
| IL-2R+IL-8 | RF | 0.772 | 0.776 | 0.763 | 0.879 | 0.817 |
| GB | 0.792 | 0.793 | 0.818 | 0.818 | 0.818 | |
| SVM | 0.764 | 0.707 | 0.690 | 0.879 | 0.773 | |
| DT | 0.714 | 0.707 | 0.735 | 0.758 | 0.746 | |
| KNN | 0.762 | 0.724 | 0.730 | 0.818 | 0.771 | |
| All features | RF | 0.954 | 0.897 | 0.909 | 0.909 | 0.909 |
| GB | 0.953 | 0.914 | 0.967 | 0.879 | 0.921 | |
| SVM | 0.941 | 0.879 | 0.882 | 0.909 | 0.896 | |
| DT | 0.887 | 0.862 | 0.857 | 0.909 | 0.882 | |
| KNN | 0.939 | 0.862 | 0.903 | 0.848 | 0.875 |
Tab 3 Comparison of the predictive performance of the five models for multi-feature variables in the test set for patients with breast cancer before and after neoadjuvant therapy
| Multi-feature | Model | AUC | Accuracy | Precision rate | Recall | F1 value |
|---|---|---|---|---|---|---|
| WBC+HB+HDL | RF | 0.928 | 0.914 | 0.938 | 0.909 | 0.923 |
| GB | 0.900 | 0.776 | 0.885 | 0.697 | 0.780 | |
| SVM | 0.941 | 0.897 | 0.909 | 0.909 | 0.909 | |
| DT | 0.799 | 0.793 | 0.862 | 0.758 | 0.806 | |
| KNN | 0.907 | 0.897 | 0.886 | 0.939 | 0.912 | |
| IL-2R+IL-8 | RF | 0.772 | 0.776 | 0.763 | 0.879 | 0.817 |
| GB | 0.792 | 0.793 | 0.818 | 0.818 | 0.818 | |
| SVM | 0.764 | 0.707 | 0.690 | 0.879 | 0.773 | |
| DT | 0.714 | 0.707 | 0.735 | 0.758 | 0.746 | |
| KNN | 0.762 | 0.724 | 0.730 | 0.818 | 0.771 | |
| All features | RF | 0.954 | 0.897 | 0.909 | 0.909 | 0.909 |
| GB | 0.953 | 0.914 | 0.967 | 0.879 | 0.921 | |
| SVM | 0.941 | 0.879 | 0.882 | 0.909 | 0.896 | |
| DT | 0.887 | 0.862 | 0.857 | 0.909 | 0.882 | |
| KNN | 0.939 | 0.862 | 0.903 | 0.848 | 0.875 |
| 1 | SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. |
| 2 | BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. |
| 3 | RAMIN C, SCHAEFFER M L, ZHENG Z, et al. All-Cause and cardiovascular disease mortality among breast cancer survivors in CLUE Ⅱ, a long-standing community-based cohort[J].J Natl Cancer Inst, 2021, 113(2): 137-145. |
| 4 | JOHNSON K W, TORRES SOTO J, GLICKSBERG B S, et al. Artificial intelligence in cardiology[J]. J Am Coll Cardiol, 2018, 71(23): 2668-2679. |
| 5 | OIKONOMOU E K, KHERA R. Machine learning in precision diabetes care and cardiovascular risk prediction[J]. Cardiovasc Diabetol, 2023, 22(1): 259. |
| 6 | YANG H Z, YU B X, OUYANG P, et al. Machine learning-aided risk prediction for metabolic syndrome based on 3 years study[J]. Sci Rep, 2022, 12(1): 2248. |
| 7 | WANG G, ZHANG Y, LI S, et al. A machine learning-based prediction model for cardiovascular risk in women with preeclampsia[J]. Front Cardiovasc Med, 2021, 8: 736491. |
| 8 | BETANCUR J, COMMANDEUR F, MOTLAGH M, et al. Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: a multicenter study[J]. JACC Cardiovasc Imaging, 2018, 11(11): 1654-1663. |
| 9 | ALAA A M, BOLTON T, DI ANGELANTONIO E, et al. Cardiovascular disease risk prediction using automated machine learning: a prospective study of 423, 604 UK Biobank participants[J]. PLoS One, 2019, 14(5): e0213653. |
| 10 | PUJADAS E R, RAISI-ESTABRAGH Z, SZABO L, et al. Prediction of incident cardiovascular events using machine learning and CMR radiomics[J]. Eur Radiol, 2023, 33(5): 3488-3500. |
| 11 | TAWFIQ E, SELAK V, ELWOOD J M, et al. Performance of cardiovascular disease risk prediction equations in more than 14 000 survivors of cancer in New Zealand primary care: a validation study[J]. Lancet, 2023, 401(10374): 357-365. |
| 12 | MENG M, ZHAO C. Application of support vector machines to a small-sample prediction[J]. Adv Petrol Explor Dev, 2015, 2(10): 72-75. |
| 13 | MUHAMMAD S, FAN T, HAI Y, et al. Reigniting hope in cancer treatment: the promise and pitfalls of IL-2 and IL-2R targeting strategies[J]. Mol Cancer, 2023, 22(1): 121. |
| 14 | HERNANDEZ R, PÕDER J, LAPORTE K M, et al. Engineering IL-2 for immunotherapy of autoimmunity and cancer[J]. Nat Rev Immunol, 2022, 22(10): 614-628. |
| 15 | BAGGIOLINI M, CLARK-LEWIS I. Interleukin-8, a chemotactic and inflammatory cytokine[J]. FEBS Lett, 1992, 307(1): 97-101. |
| 16 | LIU Y Y, ZHOU N N, ZHOU L, et al. IL-2 regulates tumor-reactive CD8+ T cell exhaustion by activating the aryl hydrocarbon receptor[J]. Nat Immunol, 2021, 22(3): 358-369. |
| 17 | LIU Q, LI A, TIAN Y, et al. The CXCL8-CXCR1/2 pathways in cancer[J]. Cytokine Growth Factor Rev, 2016, 31: 61-71. |
| 18 | SINGH J K, SIMÕES B M, HOWELL S J, et al. Recent advances reveal IL-8 signaling as a potential key to targeting breast cancer stem cells[J]. Breast Cancer Res, 2013, 15(4): 210. |
| 19 | AHMED S, MOHAMED H T, EL-HUSSEINY N, et al. IL-8 secreted by tumor associated macrophages contribute to lapatinib resistance in HER2-positive locally advanced breast cancer via activation of Src/STAT3/ERK1/2-mediated EGFR signaling[J]. Biochim Biophys Acta Mol Cell Res, 2021, 1868(6): 118995. |
| 20 | PAN K, XU C, CHEN C, et al. Soluble interleukin-2 receptor combined with interleukin-8 is a powerful predictor of future adverse cardiovascular events in patients with acute myocardial infarction[J]. Front Cardiovasc Med, 2023, 10: 1110742. |
| 21 | BOUCHENTOUF M, WILLIAMS P, FORNER K A, et al. Interleukin-2 enhances angiogenesis and preserves cardiac function following myocardial infarction[J]. Cytokine, 2011, 56(3): 732-738. |
| 22 | APOSTOLAKIS S, VOGIATZI K, AMANATIDOU V, et al. Interleukin 8 and cardiovascular disease[J]. Cardiovasc Res, 2009, 84(3): 353-360. |
| 23 | KIM C S, PARK H S, KAWADA T, et al. Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and associated with obesity-related parameters[J]. Int J Obes, 2006, 30(9): 1347-1355. |
| 24 | ZHAO H, HUANG R, JIANG M, et al. Myocardial tissue-level characteristics of adults with metabolically healthy obesity[J]. JACC Cardiovasc Imaging, 2023, 16(7): 889-901. |
| 25 | QU F, CHEN R, PENG Y, et al. Assessment of the predictive role of serum lipid profiles in breast cancer patients receiving neoadjuvant chemotherapy[J]. J Breast Cancer, 2020, 23(3): 246-258. |
| 26 | TAHMASSEBI A, WENGERT G J, HELBICH T H, et al. Impact of machine learning with multiparametric magnetic resonance imaging of the breast for early prediction of response to neoadjuvant chemotherapy and survival outcomes in breast cancer patients[J]. Invest Radiol, 2019, 54(2): 110-117. |
| 27 | SHI Z, HUANG X, CHENG Z, et al. MRI-based quantification of intratumoral heterogeneity for predicting treatment response to neoadjuvant chemotherapy in breast cancer[J]. Radiology, 2023, 308(1): e222830. |
| [1] | WANG Jingyi, DENG Jiali, ZHU Yi, DING Xinyi, GUO Jiajing, WANG Zhongling. Experimental study on novel pH-responsive manganese-based nanoprobes for ferroptosis and magnetic resonance imaging in breast cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(9): 1183-1193. |
| [2] | JIANG Yi, HUANG Chenhao, LI Zhiliang, WU Junwei, ZHAO Ren, ZHANG Tao. Effect of preoperative chemotherapy combined with immunotherapy in a colorectal cancer patient with KRAS mutation [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(9): 1256-1260. |
| [3] | HUANG Xin, LIU Jiahui, YE Jingwen, QIAN Wenli, XU Wanxing, WANG Lin. Development and clinical application of a machine learning-driven model for metabolite-based diagnosis of small cell lung cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(8): 1009-1016. |
| [4] | ZHANG Zhengjia, LI Xiaomin, ZHOU Xin, MA Hairong, AI Songtao. Preliminary study on the value of high-order functional magnetic resonance imaging in the evaluation of bone and soft tissue tumors [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(5): 585-596. |
| [5] | DENG Jiali, GUO Jiajing, WANG Jingyi, DING Xinyi, ZHU Yi, WANG Zhongling. Self -assembled drug -loaded nanoprobes for pyroptosis sensitization and chemical exchange saturation transfer imaging in breast cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(3): 271-281. |
| [6] | WU Shiyi, CHEN Si, LIU Bohan, LIU Yuting, LIU Yiwen, HE Yiqing, DU Yan, ZHANG Guoliang, GUO Qian, GAO Feng, YANG Cuixia. Role of "HA coat" in modulating stemness and endocrine resistance in ER+ breast cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(10): 1298-1307. |
| [7] | YU Zhiyuan, DONG Haiping, GAO Nan, MA Ke. Identification and mechanistic analysis of core genes associated with morphine tolerance in dorsal root ganglion: an integrative transcriptomics approach using WGCNA and machine learning algorithms [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(10): 1308-1319. |
| [8] | XU Wanxing, WANG Lin, GUO Qiaomei, WANG Xueqing, LOU Jiatao. Clinical validation and application value exploration of multi-modal pulmonary nodule diagnosis model [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(8): 1030-1036. |
| [9] | HAN Yishan, XU Ziqi, TAO Mengyu, FAN Guangjian, YU Bo. PRMT6 promotes the proliferation and migration of breast cancer cells [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(8): 999-1010. |
| [10] | WANG Wei, WANG Hongli, ALIBIYATI·i Ain, YILIYAER· Rousu, AYI NUER, YANG Liang. Function of vasohibin-2 and the mechanism of alternative splicing in triple-negative breast cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(12): 1526-1535. |
| [11] | TAN Chen, XU Zhangrun, XUE Yang, CHEN Jiayu, YAO Lijun. Research progress in drug repurposing in the treatment of breast cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(11): 1454-1459. |
| [12] | DU Shaoqian, TAO Mengyu, CAO Yuan, WANG Hongxia, HU Xiaoqu, FAN Guangjian, ZANG Lijuan. CXCL9 expression in breast cancer and its correlation with the characteristics of tumor immunoinfiltration [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(7): 860-872. |
| [13] | MA Ben, ZHAO Cheng, SHU Yijun, DONG Ping. Application progress of CT radiomics in gastrointestinal stromal tumor [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(7): 923-930. |
| [14] | CAO Yuan, WANG Hongxia, ZHU Ying, LI Junjian. Expression of tetraspanin 1 in breast cancer and its mechanism in promoting the progression of breast cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(3): 293-300. |
| [15] | YANG Xiaoxuan, ZHU Shan, QIAN Cheng, CHU Xiaoying. Effect of intraoperative use of low-dose dexmedetomidine on the prognosis of patients undergoing breast cancer surgery [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(2): 194-200. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||