
Journal of Shanghai Jiao Tong University (Medical Science) ›› 2025, Vol. 45 ›› Issue (8): 1053-1058.doi: 10.3969/j.issn.1674-8115.2025.08.013
• Review • Previous Articles Next Articles
Received:2025-02-28
Accepted:2025-07-18
Online:2025-08-28
Published:2025-08-28
Contact:
HUANG Xinzhi
E-mail:jyhuangxz@shsmu.edu.cn
Supported by:CLC Number:
HUANG Zihan, HUANG Xinzhi. Application of single-cell RNA sequencing in bone regeneration[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(8): 1053-1058.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2025.08.013
| Cell type | Key subpopulation | Location | Species | Feature | Reference |
|---|---|---|---|---|---|
| Immune cell | B cell | Hip callus | Human | Promote early-stage osteogenesis while inhibiting excessive bone formation in later stages | [ |
| CD14+ dentritic cell | Hip callus | Human | Potential biomarkers of bone nonunion | [ | |
| M2 macrophage | Cranial periosteum | Swine | Secrete neuregulin-1 to recruit periosteal stromal cells | [ | |
| Skeletal stem/progenitor cell | Inhba+ progenitor cell | Femoral callus | Mouse | Promote SMAD2 phosphorylation, enhance progenitor cell proliferation and differentiation | [ |
| CD168+ skeletal stem cell | Femoral callus | Mouse | Osteogenic and chondrogenic differentiation | [ | |
| Ctsk+ periosteal progenitor cell | Femoral callus | Mouse | Mechanosentive; chondrogenic differentiation | [ | |
| Sox9+ progenitor cell | Cranial periosteum | Mouse | Osteogenic differentiation | [ | |
| Mkx+ cell | Cranial suture | Mouse | Mechanosentive; osteogenic differentiation | [ | |
| Prrx1+ cell | Mandibular callus | Canine | Mechanosentive; osteogenic differentiation | [ | |
| Krt14+Ctsk+ cell | Maxillary sinus mucosa | Mouse | Co-expression of epithelial and mesenchymal characteristics | [ | |
| Ctsk+Ly6a+ cell | Mandibular of bone marrow | Mouse | Osteogenic differentiation | [ | |
| Fat4+ cell | Alveolar bone | Mouse | Osteogenic differentiation | [ | |
| Skeletal muscle stem cell | Prrx1+ Skeletal muscle stem cell | Femoral callus | Mouse | Promote fibrous tissue aggregation, leading to nonunion | [ |
Tab1 Key cell lineages responsible for bone regeneration
| Cell type | Key subpopulation | Location | Species | Feature | Reference |
|---|---|---|---|---|---|
| Immune cell | B cell | Hip callus | Human | Promote early-stage osteogenesis while inhibiting excessive bone formation in later stages | [ |
| CD14+ dentritic cell | Hip callus | Human | Potential biomarkers of bone nonunion | [ | |
| M2 macrophage | Cranial periosteum | Swine | Secrete neuregulin-1 to recruit periosteal stromal cells | [ | |
| Skeletal stem/progenitor cell | Inhba+ progenitor cell | Femoral callus | Mouse | Promote SMAD2 phosphorylation, enhance progenitor cell proliferation and differentiation | [ |
| CD168+ skeletal stem cell | Femoral callus | Mouse | Osteogenic and chondrogenic differentiation | [ | |
| Ctsk+ periosteal progenitor cell | Femoral callus | Mouse | Mechanosentive; chondrogenic differentiation | [ | |
| Sox9+ progenitor cell | Cranial periosteum | Mouse | Osteogenic differentiation | [ | |
| Mkx+ cell | Cranial suture | Mouse | Mechanosentive; osteogenic differentiation | [ | |
| Prrx1+ cell | Mandibular callus | Canine | Mechanosentive; osteogenic differentiation | [ | |
| Krt14+Ctsk+ cell | Maxillary sinus mucosa | Mouse | Co-expression of epithelial and mesenchymal characteristics | [ | |
| Ctsk+Ly6a+ cell | Mandibular of bone marrow | Mouse | Osteogenic differentiation | [ | |
| Fat4+ cell | Alveolar bone | Mouse | Osteogenic differentiation | [ | |
| Skeletal muscle stem cell | Prrx1+ Skeletal muscle stem cell | Femoral callus | Mouse | Promote fibrous tissue aggregation, leading to nonunion | [ |
| [1] | TANG F C, BARBACIORU C, WANG Y Z, et al. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nat Methods, 2009, 6(5): 377-382. |
| [2] | WANG T, WANG L, ZHANG L P, et al. Single-cell RNA sequencing in orthopedic research[J]. Bone Res, 2023, 11(1): 10. |
| [3] | GU Y Y, HU Y, ZHANG H, et al. Single-cell RNA sequencing in osteoarthritis[J]. Cell Prolif, 2023, 56(12): e13517. |
| [4] | SAUL D, KHOSLA S. Fracture healing in the setting of endocrine diseases, aging, and cellular senescence[J]. Endocr Rev, 2022, 43(6): 984-1002. |
| [5] | NICHOLSON J A, MAKARAM N, SIMPSON A, et al. Fracture nonunion in long bones: a literature review of risk factors and surgical management[J]. Injury, 2021, 52(Suppl 2): S3-S11. |
| [6] | ZHANG H, WANG R, WANG G, et al. Single-cell RNA sequencing reveals B cells are important regulators in fracture healing[J]. Front Endocrinol, 2021, 12: 666140. |
| [7] | LU Y N, LUO Y, ZHANG Q, et al. Decoding the immune landscape following hip fracture in elderly patients: unveiling temporal dynamics through single-cell RNA sequencing[J]. Immun Ageing, 2023, 20(1): 54. |
| [8] | AVIN K G, DOMINGUEZ J M 2nd, CHEN N X, et al. Single-cell RNAseq provides insight into altered immune cell populations in human fracture nonunions[J]. J Orthop Res, 2023, 41(5): 1060-1069. |
| [9] | TANG W, LI Z W, MIAO G Q, et al. Single-cell RNA sequencing reveals transcriptional changes in the cartilage of subchondral insufficiency fracture of the knee[J]. J Inflamm Res, 2022, 15: 6105-6112. |
| [10] | YAO L, LU J, ZHONG L, et al. Activin A marks a novel progenitor cell population during fracture healing and reveals a therapeutic strategy[J]. eLife, 2023, 12: e89822. |
| [11] | HAO R C, LI Z L, WANG F Y, et al. Single-cell transcriptomic analysis identifies a highly replicating Cd168+ skeletal stem/progenitor cell population in mouse long bones[J]. J Genet Genom, 2023, 50(9): 702-712. |
| [12] | LIU R, JIAO Y R, HUANG M, et al. Mechanosensitive protein polycystin-1 promotes periosteal stem/progenitor cells osteochondral differentiation in fracture healing[J]. Theranostics, 2024, 14(6): 2544-2559. |
| [13] | JULIEN A, KANAGALINGAM A, MARTÍNEZ-SARRÀ E, et al. Direct contribution of skeletal muscle mesenchymal progenitors to bone repair[J]. Nat Commun, 2021, 12(1): 2860. |
| [14] | XIAO D, FANG L, LIU Z T, et al. DNA methylation-mediated Rbpjk suppression protects against fracture nonunion caused by systemic inflammation[J]. J Clin Invest, 2023, 134(3): e168558. |
| [15] | LIU J T, LIN X, MCDAVID A, et al. Molecular signatures distinguish senescent cells from inflammatory cells in aged mouse callus stromal cells[J]. Front Endocrinol (Lausanne), 2023, 14: 1090049. |
| [16] | GALEA G L, ZEIN M R, ALLEN S, et al. Making and shaping endochondral and intramembranous bones[J]. Dev Dyn, 2021, 250(3): 414-449. |
| [17] | LEITCH V D, DUNCAN BASSETT J H, WILLIAMS G R. Role of thyroid hormones in craniofacial development[J]. Nat Rev Endocrinol, 2020, 16(3): 147-164. |
| [18] | LU D Z, ZHANG Y F, LIANG S M, et al. M2 macrophages guide periosteal stromal cell recruitment and initiate bone injury regeneration[J]. Biomedicines, 2024, 12(6): 1205. |
| [19] | NAKAYAMA M, OKADA H, SEKI M, et al. Single-cell RNA sequencing unravels heterogeneity of skeletal progenitors and cell-cell interactions underlying the bone repair process[J]. Regen Ther, 2022, 21: 9-18. |
| [20] | WANG Y Y, QIN Q Z, WANG Z Y, et al. The Mohawk homeobox gene represents a marker and osteo-inhibitory factor in calvarial suture osteoprogenitor cells[J]. Cell Death Dis, 2024, 15(6): 420. |
| [21] | WINTERS R, TATUM S A. Craniofacial distraction osteogenesis[J]. Facial Plast Surg Clin North Am, 2014, 22(4): 653-664. |
| [22] | JIANG W D, ZHU P Q, ZHANG T, et al. PRRX1+MSCs enhance mandibular regeneration during distraction osteogenesis[J]. J Dent Res, 2023, 102(9): 1058-1068. |
| [23] | TEVLIN R, GRIFFIN M, CHEN K, et al. Denervation during mandibular distraction osteogenesis results in impaired bone formation[J]. Sci Rep, 2023, 13(1): 2097. |
| [24] | WENG Y T, WANG H C, WU D, et al. A novel lineage of osteoprogenitor cells with dual epithelial and mesenchymal properties govern maxillofacial bone homeostasis and regeneration after MSFL[J]. Cell Res, 2022, 32(9): 814-830. |
| [25] | ZHOU B O, YUE R, MURPHY M M, et al. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow[J]. Cell Stem Cell, 2014, 15(2): 154-168. |
| [26] | MIZOGUCHI T, PINHO S, AHMED J, et al. Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development[J]. Dev Cell, 2014, 29(3): 340-349. |
| [27] | SHU H S, LIU Y L, TANG X T, et al. Tracing the skeletal progenitor transition during postnatal bone formation[J]. Cell Stem Cell, 2021, 28(12): 2122-2136.e3. |
| [28] | DING Y, MO C, GENG J, et al. Identification of periosteal osteogenic progenitors in jawbone[J]. J Dent Res, 2022, 101(9): 1101-1109. |
| [29] | JIN A, XU H, GAO X, et al. ScRNA-seq reveals a distinct osteogenic progenitor of alveolar bone[J]. J Dent Res, 2023, 102(6): 645-655. |
| [30] | WAN Z Q, BAI X Q, WANG X, et al. Mgp high-expressing MSCs orchestrate the osteoimmune microenvironment of collagen/nanohydroxyapatite-mediated bone regeneration[J]. Adv Sci (Weinh), 2024, 11(23): e2308986. |
| [31] | PAN H, WEI Y X, ZENG C J, et al. Hierarchically assembled nanofiber scaffold guides long bone regeneration by promoting osteogenic/chondrogenic differentiation of endogenous mesenchymal stem cells[J]. Small, 2024, 20(26): e2309868. |
| [32] | WANG X Q, MA C Q, ZHANG X C, et al. Mussel inspired 3D elastomer enabled rapid calvarial bone regeneration through recruiting more osteoprogenitors from the Dura mater[J]. Regen Biomater, 2024, 11: rbae059. |
| [33] | GUO P, LIU X Z, ZHANG P H, et al. A single-cell transcriptome of mesenchymal stromal cells to fabricate bioactive hydroxyapatite materials for bone regeneration[J]. Bioact Mater, 2021, 9: 281-298. |
| [34] | HE Z H, LI H, ZHANG Y Y, et al. Enhanced bone regeneration via endochondral ossification using Exendin-4-modified mesenchymal stem cells[J]. Bioact Mater, 2023, 34: 98-111. |
| [35] | WEI J, BAPTISTA-HON D T, WANG Z, et al. Bioengineered human tissue regeneration and repair using endogenous stem cells[J]. Cell Rep Med, 2023, 4(8): 101156. |
| [36] | SUN J, HU L L, BOK S, et al. A vertebral skeletal stem cell lineage driving metastasis[J]. Nature, 2023, 621(7979): 602-609. |
| [1] | ZHANG Xingyu, LI Ruogu. Systematic analysis and exploration of single-cell transcriptomes in aortic aneurysm [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(6): 735-744. |
| [2] | ZHU Hanyi, SHI Huan, YU Chuangqi, ZHENG Lingyan. Preliminary study on early warning value and mechanism of interleukin-1β in extremely severe oral and maxillofacial space infections [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(6): 661-672. |
| [3] | LU Jiayi, LIU Jinzhe, GUO Shangchun, TAO Shicong. Advances in nanomaterials for promoting bone tissue regeneration by reducing reactive oxygen species levels [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(4): 487-492. |
| [4] | SI Chunying, WANG Jianru, LI Xiaohui, WANG Yongxia, GUAN Huaimin. Study on intercellular communication and key genes of smooth muscle cells in human coronary atherosclerosis based on single cell sequencing technology [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(2): 169-182. |
| [5] | LIU Siyu, ZHANG Lei. Sevoflurane inhibits the differentiation and development of neural progenitor cells into neurons in the prefrontal cortex of newborn mice [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(9): 1115-1130. |
| [6] | WU Jing, ZHAO Zhengyi, ZOU Duohong, YANG Chi, ZHANG Zhiyuan. Application of a tent-pole screw technology in reconstruction of severe alveolar bone defect: a retrospective study of 30 patients [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(6): 768-777. |
| [7] | Qing WANG, Wei WANG, Da-jun JIANG, Wei-tao JIA. Evaluation of JDBM porous scaffold coated with DCPD in promoting angiogenesis and repairing bone defects [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(6): 732-740. |
| [8] | Jia-qiang LUO, Liang-yu ZHAO, Chen-cheng YAO, Zi-jue ZHU, Xiao-yu XING, Peng LI, Ru-hui TIAN, Hui-xing CHEN, Jie SUN, Zheng LI. Single-cell RNA sequencing reveals the spatio-temporal expression profile of SARS-CoV-2 related receptor in human and mouse testes [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(4): 421-426. |
| [9] | LI Yuan, SHI Jun-yu, ZHANG Xiao, LAI Hong-chang. Correlation between the morphology of alveolar bone defect in the maxillary anterior region and the outcome of guided bone regeneration [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(10): 1414-1419. |
| [10] | CHENG Ruo-yu, YAN Yu-fei, CHEN Hao, QI Jin, DENG Lian-fu, CUI Wen-guo. Fabrication of dual-functional organic/inorganic osteogenetic hydrogel for bone regeneration [J]. , 2018, 38(8): 900-. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
