A case-control study of the relationship between early-life environmental exposure and childhood asthma
DENG Yuntian,1, XIONG Wenkui1, ZHU Rui1, LIU Enmei2,3, LI Xuemei,4, ZHONG Zhaohui,5
1.The First Clinical College, Chongqing Medical University, Chongqing 400016, China
2.Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
3.National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
4.Pediatric Outpatient, Chongqing Health Center for Women and Children/Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
5.School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing 400016, China
Objective ·To explore the potential impact of early-life environmental exposure on childhood asthma in Chongqing, China. Methods ·A case-control study was designed. The cases with asthma diagnosis were enrolled from outpatients of the respiratory medicine departments and the healthy children without history of asthma were enrolled from health check-up clinics of the child health care departments in two tertiary children's hospitals in Chongqing from September 2020 to January 2022. The children in the two groups had all lived in Chongqing since birth and their home addresses had not changed before they were 3 years old. A self-developed “Children's Early-Life Environment Survey” was used to collect general personal data, family information, child health status, birth history, and indoor environment from birth to 3 years old (second-hand smoke, dampness and mold points in bedroom, seen cockroaches in bedroom, bedroom cleaning frequency, air conditioning and air purifier use, and decoration). Based on the home address information before 3 years old, annual particular matter 2.5 (PM2.5) exposure levels were estimated by using a high spatiotemporal resolution model. Univariate and multivariate Logistic regression models were used to analyze the early-life environmental factors affecting the development of childhood asthma. The risk factors which were statistically significant in univariate Logistic regression or had clinical significance were included in the multivariate model. Results ·A total of 220 asthma cases and 636 healthy control children were enrolled. The mean age of the asthma cases and the controls were (7.4±2.1) and (7.6±2.1) years old, respectively. There were no statistically significant differences in age, gender, gestational age, birth weight, mode of delivery, family size, annual family income, maternal education level and living space per person. Multivariate Logistic regression analysis showed that early-life bedroom dampness and mold exposure [odds ratio (OR)=2.155, 95% confidence interval (CI) 1.304‒3.559, P=0.003], bedroom cockroach exposure (OR=1.830, 95%CI 1.287‒2.601, P=0.001), bedroom air conditioner use (OR=2.328, 95%CI 1.098‒4.937, P=0.028), second-hand smoke exposure (OR=1.762, 95%CI 1.272‒2.440, P=0.001), and long term exposure to PM2.5 at one year old (OR=1.063, 95%CI 1.034‒1.093, P=0.000) increased the risk of childhood asthma. Daily use of air purifier (OR=0.416, 95%CI 0.213‒0.812, P=0.010) could reduce the risk of childhood asthma. Conclusion ·Early-life environmental exposure is of great significance for the development of childhood asthma. Early-life bedroom dampness and mold exposure, cockroach exposure, second-hand smoke, incorrect use of air conditioner, and long-term exposure of children to PM2.5 in the first year after birth are independent risk factors for the development of childhood asthma.
DENG Yuntian, XIONG Wenkui, ZHU Rui, LIU Enmei, LI Xuemei, ZHONG Zhaohui. A case-control study of the relationship between early-life environmental exposure and childhood asthma. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2023, 43(1): 44-51 doi:10.3969/j.issn.1674-8115.2023.01.006
本研究自行研制儿童生命早期环境因素暴露调查问卷。该问卷基于儿童哮喘及其他过敏性疾病国际间对比研究(International Study of Asthma and Allergies in Childhood,ISAAC)问卷[17]、美国胸科协会儿童呼吸系统健康量表[18]ATS-DLD-78-C(the Children's Questionnaire of the American Thoracic Society and the Division of Lung Diseases)以及建筑物潮湿与健康问卷(Dampness in Buildings and Health,DBH)[19]设计,并结合重庆地区实际情况进行删改。问卷内容包括患儿的基本信息和家庭情况(儿童年龄、性别、家庭同住人口数、家庭年收入水平、母亲的受教育年限、人均生活空间)、儿童健康状况及其出生情况[胎龄、出生体质量、分娩方式、既往患病史(哮喘、先天性心脏病、神经系统疾病和其他慢性疾病)]、儿童出生后至3岁的生命早期室内环境情况(烟草烟雾暴露及暴露水平、儿童卧室霉点霉斑暴露、儿童卧室内蟑螂暴露、儿童卧室清洁频率、儿童卧室空调使用、家庭空气净化器使用频率以及既往装修史)、家庭住址信息等资料。该问卷经过流行病学专家及儿童专科医师验证并已经在过往研究中使用[16],Cronbach's α值为0.95,具有良好的代表性。
1.2.2 儿童生命早期PM2.5暴露模型
本研究应用多角度大气校正(multi-angle implementation of atmospheric correction,MAIAC)光谱算法得到气溶胶光学厚度(aerosol optical depth,AOD),并收集重庆地区空气质量监测网络每日PM2.5实测数据,实现对重庆地区历史PM2.5浓度的推断。在对人口密度、海拔、归一化植被指数(normalized difference vegetation index,NDVI)、土地利用及气象参数(温度、湿度、风向、风速、能见度等)进行校正后,利用随机森林模型构建重庆地区日均PM2.5长期暴露评价模型,结合儿童出生前至3岁的家庭地址信息得到儿童个体生命早期PM2.5暴露水平数据。该方法基于高时空分辨率模型,可以更好地评估局部空间内PM2.5的变化水平,已被应用于其他PM2.5污染和人体健康的流行病学研究[20-21]。
除烟草烟雾暴露外,大气颗粒物浓度增加也可导致儿童颗粒物暴露水平上升[29]。短期及长期环境颗粒污染物暴露都可对儿童哮喘产生不良影响[30]。PM2.5相对于PM10而言,空气动力学直径更小,易于沉积在肺部而对儿童造成更大的影响。此次新修订的《室内空气质量标准》首次将PM2.5纳入检测指标,并于2023年正式实施[31]。PM2.5主要来源于燃料燃烧、工业排放以及机动车使用[32]。国内外研究[33-36]普遍发现,短期暴露于PM2.5可以导致儿童哮喘的门急诊就诊及住院风险增加;而对于PM2.5的长期暴露而言,即使较低的PM2.5暴露水平也与哮喘之间存在明显关联性[37]。PIAMA(prevention and incidence of asthma and mite allergy)出生队列的研究[38-39]显示,早期环境颗粒物污染暴露会导致哮喘的发病风险增加,提示大气环境污染物可能导致儿童颗粒污染物接触水平上升,进而导致哮喘。本研究中,我们使用卫星反演技术获得高精度、高时空分辨率的儿童生命早期PM2.5暴露水平数据,为我国西南地区的儿童颗粒物暴露水平提供一定参考。值得注意的是,细颗粒污染物的组分在国家之间或者国内各地区之间存在一定的区域差异,因此在密切检测不同直径细颗粒污染物浓度的同时,仍需对不同地区的细颗粒污染物成分变化进行监测,以便更好地了解其对于儿童健康所造成的潜在影响。
DENG Yuntian performed the statistical analysis and drafted the manuscript, contributing to the study design and participants recruitment. XIONG Wenkui participated in data collation and data statistics. LIU Enmei and ZHU Rui were involved in the result analysis and participants recruitment. LI Xuemei and ZHONG Zhaohui were responsible for the study design and revised the manuscript. All the authors have read the last version of paper and consented for submission.
利益冲突声明
所有作者声明不存在利益冲突。
All authors disclose no relevant conflict of interests.
The National Cooperative Group on Childhood Asthma, Institute of Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention. Third nationwide survey of childhood asthma in urban areas of China [J]. Chinese Journal of Pediatrics, 2013, 51(10): 729-735.
BURBANK A J, SOOD A K, KESIC M J, et al. Environmental determinants of allergy and asthma in early life[J]. J Allergy Clin Immunol, 2017, 140(1): 1-12.
LITONJUA A A, CAREY V J, BURGE H A, et al. Exposure to cockroach allergen in the home is associated with incident doctor-diagnosed asthma and recurrent wheezing[J]. J Allergy Clin Immunol, 2001, 107(1): 41-47.
DOUWES J, VAN STRIEN R, DOEKES G, et al. Does early indoor microbial exposure reduce the risk of asthma? The prevention and incidence of asthma and mite allergy birth cohort study[J]. J Allergy Clin Immunol, 2006, 117(5): 1067-1073.
STOLTZ D J, JACKSON D J, EVANS M D, et al. Specific patterns of allergic sensitization in early childhood and asthma & rhinitis risk[J]. Clin Exp Allergy, 2013, 43(2): 233-241.
MILIKU K, AZAD M B. Breastfeeding and the developmental origins of asthma: current evidence, possible mechanisms, and future research priorities[J]. Nutrients, 2018, 10(8): 995.
LOEWEN K, MONCHKA B, MAHMUD S M, et al. Prenatal antibiotic exposure and childhood asthma: a population-based study[J]. Eur Respir J, 2018, 52(1): 1702070.
TOIVONEN L, SCHUEZ-HAVUPALO L, KARPPINEN S, et al. Antibiotic treatments during infancy, changes in nasal microbiota, and asthma development: population-based cohort study[J]. Clin Infect Dis, 2021, 72(9): 1546-1554.
ZHANG M Z, CHU S S, XIA Y K, et al. Environmental exposure during pregnancy and the risk of childhood allergic diseases[J]. World J Pediatr, 2021, 17(5): 467-475.
AKAR-GHIBRIL N, PHIPATANAKUL W. The indoor environment and childhood asthma[J]. Curr Allergy Asthma Rep, 2020, 20(9): 43.
O'CONNOR G T, LYNCH S V, BLOOMBERG G R, et al. Early-life home environment and risk of asthma among inner-city children[J]. J Allergy Clin Immunol, 2018, 141(4): 1468-1475.
ZHANG Q L, MENG X, SHI S, et al. Overview of particulate air pollution and human health in China: evidence, challenges, and opportunities[J]. Innovation (Camb), 2022, 3(6): 100312.
Respiratory Group, Society of Pediatrics, Chinese Medical Association, Editorial Board of Chinese Journal of Pediatrics. Guidelines for the diagnosis and prevention of children′s bronchial asthma (2016 edition)[J]. Chinese Journal of Pediatrics, 2016, 54(3): 167-181.
DENG Y T, LI X M, LIU E M, et al. Associations of early-life factors and indoor environmental exposure with asthma among children: a case-control study in Chongqing, China[J]. World J Pediatr, 2022, 18(3): 186-195.
ELLWOOD P, ASHER M I, BEASLEY R, et al. The international study of asthma and allergies in childhood (ISAAC): phase three rationale and methods[J]. Int J Tuberc Lung Dis, 2005, 9(1): 10-16.
FERRIS B G. Epidemiology standardization project Ⅱ. Recommended respiratory disease questionnaires for use with adults and children in epidemiological research[J]. Am Rev Respir Dis, 1978, 118: 7-53.
BORNEHAG C G, SUNDELL J, SIGSGAARD T. Dampness in buildings and health (DBH): report from an ongoing epidemiological investigation on the association between indoor environmental factors and health effects among children in Sweden[J]. Indoor Air, 2004, 14(Suppl 7): 59-66.
MENG X, LIU C, ZHANG L N, et al. Estimating PM2.5 concentrations in Northeastern China with full spatiotemporal coverage, 2005‒2016[J]. Remote Sens Environ, 2021, 253: 112203.
XU X, TAO S Y, HUANG L, et al. Maternal PM2.5 exposure during gestation and offspring neurodevelopment: findings from a prospective birth cohort study[J]. Sci Total Environ, 2022, 842: 156778.
WANG L, GUO R, YANG H, et al. Analysis between indoor environment and childhood asthma and family nursing interventions in Chongqing [J]. Chinese General Practice, 2019, 22(12): 1405-1412.
WANG B M, CHEN H, CHAN Y L, et al. Why do intrauterine exposure to air pollution and cigarette smoke increase the risk of asthma? [J]. Front Cell Dev Biol, 2020, 8: 38.
BONNER K, SCOTNEY E, SAGLANI S. Factors and mechanisms contributing to the development of preschool wheezing disorders[J]. Expert Rev Respir Med, 2021, 15(6): 745-760.
National Health Commission of the People's Republic of China. Health hazards of smoking in China 2020[M]. Beijing: People's Medical Publishing House, 2021.
QING X J, QI Y Y, ZHANG X B. Household environment tobacco smoke exposure in hospitalized children[J]. Journal of Environment and Health, 2020, 37(3): 242-245.
TANG J, SHEN J, ZHANG S J, et al. A pilot study on secondhand smoke exposure among pregnant women in Chongqing, China: a combined questionnaire, saliva cotinine test, and ultrasound flow index analysis[J]. Front Public Health, 2020, 8: 290.
ZHOU X D, CAI J, ZHAO Y, et al. Estimation of residential fine particulate matter infiltration in Shanghai, China[J]. Environ Pollut, 2018, 233: 494-500.
GE E J, LAI K F, XIAO X, et al. Differential effects of size-specific particulate matter on emergency department visits for respiratory and cardiovascular diseases in Guangzhou, China[J]. Environ Pollut, 2018, 243(Pt A): 336-345.
National Health Commission of the People's Republic of China. National Standards of the People's Republic of China: GB/T 18883—2022, standards for indoor air quality[S/OL]. (2022-07-11)[2022-08-12]. http://c.gb688.cn/bzgk/gb/showGb?type=online&hcno=6188E2 3AE55E8F557043401FC2EDC436.
WU Y H, JIN T T, HE W, et al. Associations of fine particulate matter and constituents with pediatric emergency room visits for respiratory diseases in Shanghai, China[J]. Int J Hyg Environ Health, 2021, 236: 113805.
LIU L J, LIU C, CHEN R J, et al. Associations of short-term exposure to air pollution and emergency department visits for pediatric asthma in Shanghai, China[J]. Chemosphere, 2021, 263: 127856.
NAKHLÉ M M, FARAH W, ZIADÉ N, et al. Short-term relationships between emergency hospital admissions for respiratory and cardiovascular diseases and fine particulate air pollution in Beirut, Lebanon[J]. Environ Monit Assess, 2015, 187(4): 196.
SONG J, LU M X, ZHENG L H, et al. Acute effects of ambient air pollution on outpatient children with respiratory diseases in Shijiazhuang, China[J]. BMC Pulm Med, 2018, 18(1): 150.
WU J Z, ZHONG T L, ZHU Y, et al. Effects of particulate matter (PM) on childhood asthma exacerbation and control in Xiamen, China[J]. BMC Pediatr, 2019, 19(1): 194.
LIU S, JØRGENSEN J T, LJUNGMAN P, et al. Long-term exposure to low-level air pollution and incidence of asthma: the ELAPSE project[J]. Eur Respir J, 2021, 57(6): 2003099.
GEHRING U, BEELEN R, EEFTENS M, et al. Particulate matter composition and respiratory health: the PIAMA Birth Cohort study[J]. Epidemiology, 2015, 26(3): 300-309.
YU Z B, KOPPELMAN G H, BOER J M A, et al. Ambient ultrafine particles and asthma onset until age 20: the PIAMA birth cohort[J]. Environ Res, 2022, 214(Pt 1): 113770.
CAI J, LI B Z, YU W, et al. Associations of household dampness with asthma, allergies, and airway diseases among preschoolers in two cross-sectional studies in Chongqing, China: repeated surveys in 2010 and 2019[J]. Environ Int, 2020, 140: 105752.
HU Y, LIU W, HUANG C, et al. Home dampness, childhood asthma, hay fever, and airway symptoms in Shanghai, China: associations, dose-response relationships, and lifestyle′s influences[J]. Indoor Air, 2014, 24(5): 450-463.
SHORTER C, CRANE J, PIERSE N, et al. Indoor visible mold and mold odor are associated with new-onset childhood wheeze in a dose-dependent manner[J]. Indoor Air, 2018, 28(1): 6-15.
CAI J, LI B Z, YU W, et al. Household dampness-related exposures in relation to childhood asthma and rhinitis in China: a multicentre observational study[J]. Environ Int, 2019, 126: 735-746.
HU Y B, CHEN Y T, LIU S J, et al. Increasing prevalence and influencing factors of childhood asthma: a cross-sectional study in Shanghai, China[J]. World J Pediatr, 2021, 17(4): 419-428.
FU X, NORBÄCK D, YUAN Q Q, et al. Indoor microbiome, environmental characteristics and asthma among junior high school students in Johor Bahru, Malaysia[J]. Environ Int, 2020, 138: 105664.
CASTRO-RODRIGUEZ J A, FORNO E, RODRIGUEZ-MARTINEZ C E, et al. Risk and protective factors for childhood asthma: what is the evidence? [J]. J Allergy Clin Immunol Pract, 2016, 4(6): 1111-1122.
DU C Q, LI B Z, YU W. Indoor mould exposure: characteristics, influences and corresponding associations with built environment—a review[J]. J Build Eng, 2021, 35: 101983.
WANG H, LI B Z, YU W, et al. Early-life exposure to home dampness associated with health effects among children in Chongqing, China[J]. Build Environ, 2015, 94: 327-334.
ZHAO Z H, ZHANG X, LIU R R, et al. Prenatal and early life home environment exposure in relation to preschool children′s asthma, allergic rhinitis and eczema in Taiyuan, China[J]. Chin Sci Bull, 2013, 58(34): 4245-4251.
DONG G H, QIAN Z M, WANG J, et al. Home renovation, family history of atopy, and respiratory symptoms and asthma among children living in China[J]. Am J Public Health, 2014, 104(10): 1920-1927.
YAO Y H. Research on the characteristics of residential indoor environment and children's allergic diseases in recent ten years[D]. Chongqing: Chongqing University, 2021.
SUBLETT J L. Effectiveness of air filters and air cleaners in allergic respiratory diseases: a review of the recent literature[J]. Curr Allergy Asthma Rep, 2011, 11(5): 395-402.
D'AMATO G, HOLGATE S T, PAWANKAR R, et al. Meteorological conditions, climate change, new emerging factors, and asthma and related allergic disorders. A statement of the World Allergy Organization[J]. World Allergy Organ J, 2015, 8(1): 25.
... 本研究自行研制儿童生命早期环境因素暴露调查问卷.该问卷基于儿童哮喘及其他过敏性疾病国际间对比研究(International Study of Asthma and Allergies in Childhood,ISAAC)问卷[17]、美国胸科协会儿童呼吸系统健康量表[18]ATS-DLD-78-C(the Children's Questionnaire of the American Thoracic Society and the Division of Lung Diseases)以及建筑物潮湿与健康问卷(Dampness in Buildings and Health,DBH)[19]设计,并结合重庆地区实际情况进行删改.问卷内容包括患儿的基本信息和家庭情况(儿童年龄、性别、家庭同住人口数、家庭年收入水平、母亲的受教育年限、人均生活空间)、儿童健康状况及其出生情况[胎龄、出生体质量、分娩方式、既往患病史(哮喘、先天性心脏病、神经系统疾病和其他慢性疾病)]、儿童出生后至3岁的生命早期室内环境情况(烟草烟雾暴露及暴露水平、儿童卧室霉点霉斑暴露、儿童卧室内蟑螂暴露、儿童卧室清洁频率、儿童卧室空调使用、家庭空气净化器使用频率以及既往装修史)、家庭住址信息等资料.该问卷经过流行病学专家及儿童专科医师验证并已经在过往研究中使用[16],Cronbach's α值为0.95,具有良好的代表性. ...
1
... 本研究自行研制儿童生命早期环境因素暴露调查问卷.该问卷基于儿童哮喘及其他过敏性疾病国际间对比研究(International Study of Asthma and Allergies in Childhood,ISAAC)问卷[17]、美国胸科协会儿童呼吸系统健康量表[18]ATS-DLD-78-C(the Children's Questionnaire of the American Thoracic Society and the Division of Lung Diseases)以及建筑物潮湿与健康问卷(Dampness in Buildings and Health,DBH)[19]设计,并结合重庆地区实际情况进行删改.问卷内容包括患儿的基本信息和家庭情况(儿童年龄、性别、家庭同住人口数、家庭年收入水平、母亲的受教育年限、人均生活空间)、儿童健康状况及其出生情况[胎龄、出生体质量、分娩方式、既往患病史(哮喘、先天性心脏病、神经系统疾病和其他慢性疾病)]、儿童出生后至3岁的生命早期室内环境情况(烟草烟雾暴露及暴露水平、儿童卧室霉点霉斑暴露、儿童卧室内蟑螂暴露、儿童卧室清洁频率、儿童卧室空调使用、家庭空气净化器使用频率以及既往装修史)、家庭住址信息等资料.该问卷经过流行病学专家及儿童专科医师验证并已经在过往研究中使用[16],Cronbach's α值为0.95,具有良好的代表性. ...
1
... 本研究自行研制儿童生命早期环境因素暴露调查问卷.该问卷基于儿童哮喘及其他过敏性疾病国际间对比研究(International Study of Asthma and Allergies in Childhood,ISAAC)问卷[17]、美国胸科协会儿童呼吸系统健康量表[18]ATS-DLD-78-C(the Children's Questionnaire of the American Thoracic Society and the Division of Lung Diseases)以及建筑物潮湿与健康问卷(Dampness in Buildings and Health,DBH)[19]设计,并结合重庆地区实际情况进行删改.问卷内容包括患儿的基本信息和家庭情况(儿童年龄、性别、家庭同住人口数、家庭年收入水平、母亲的受教育年限、人均生活空间)、儿童健康状况及其出生情况[胎龄、出生体质量、分娩方式、既往患病史(哮喘、先天性心脏病、神经系统疾病和其他慢性疾病)]、儿童出生后至3岁的生命早期室内环境情况(烟草烟雾暴露及暴露水平、儿童卧室霉点霉斑暴露、儿童卧室内蟑螂暴露、儿童卧室清洁频率、儿童卧室空调使用、家庭空气净化器使用频率以及既往装修史)、家庭住址信息等资料.该问卷经过流行病学专家及儿童专科医师验证并已经在过往研究中使用[16],Cronbach's α值为0.95,具有良好的代表性. ...
1
... 本研究自行研制儿童生命早期环境因素暴露调查问卷.该问卷基于儿童哮喘及其他过敏性疾病国际间对比研究(International Study of Asthma and Allergies in Childhood,ISAAC)问卷[17]、美国胸科协会儿童呼吸系统健康量表[18]ATS-DLD-78-C(the Children's Questionnaire of the American Thoracic Society and the Division of Lung Diseases)以及建筑物潮湿与健康问卷(Dampness in Buildings and Health,DBH)[19]设计,并结合重庆地区实际情况进行删改.问卷内容包括患儿的基本信息和家庭情况(儿童年龄、性别、家庭同住人口数、家庭年收入水平、母亲的受教育年限、人均生活空间)、儿童健康状况及其出生情况[胎龄、出生体质量、分娩方式、既往患病史(哮喘、先天性心脏病、神经系统疾病和其他慢性疾病)]、儿童出生后至3岁的生命早期室内环境情况(烟草烟雾暴露及暴露水平、儿童卧室霉点霉斑暴露、儿童卧室内蟑螂暴露、儿童卧室清洁频率、儿童卧室空调使用、家庭空气净化器使用频率以及既往装修史)、家庭住址信息等资料.该问卷经过流行病学专家及儿童专科医师验证并已经在过往研究中使用[16],Cronbach's α值为0.95,具有良好的代表性. ...
... 除烟草烟雾暴露外,大气颗粒物浓度增加也可导致儿童颗粒物暴露水平上升[29].短期及长期环境颗粒污染物暴露都可对儿童哮喘产生不良影响[30].PM2.5相对于PM10而言,空气动力学直径更小,易于沉积在肺部而对儿童造成更大的影响.此次新修订的《室内空气质量标准》首次将PM2.5纳入检测指标,并于2023年正式实施[31].PM2.5主要来源于燃料燃烧、工业排放以及机动车使用[32].国内外研究[33-36]普遍发现,短期暴露于PM2.5可以导致儿童哮喘的门急诊就诊及住院风险增加;而对于PM2.5的长期暴露而言,即使较低的PM2.5暴露水平也与哮喘之间存在明显关联性[37].PIAMA(prevention and incidence of asthma and mite allergy)出生队列的研究[38-39]显示,早期环境颗粒物污染暴露会导致哮喘的发病风险增加,提示大气环境污染物可能导致儿童颗粒污染物接触水平上升,进而导致哮喘.本研究中,我们使用卫星反演技术获得高精度、高时空分辨率的儿童生命早期PM2.5暴露水平数据,为我国西南地区的儿童颗粒物暴露水平提供一定参考.值得注意的是,细颗粒污染物的组分在国家之间或者国内各地区之间存在一定的区域差异,因此在密切检测不同直径细颗粒污染物浓度的同时,仍需对不同地区的细颗粒污染物成分变化进行监测,以便更好地了解其对于儿童健康所造成的潜在影响. ...
1
... 除烟草烟雾暴露外,大气颗粒物浓度增加也可导致儿童颗粒物暴露水平上升[29].短期及长期环境颗粒污染物暴露都可对儿童哮喘产生不良影响[30].PM2.5相对于PM10而言,空气动力学直径更小,易于沉积在肺部而对儿童造成更大的影响.此次新修订的《室内空气质量标准》首次将PM2.5纳入检测指标,并于2023年正式实施[31].PM2.5主要来源于燃料燃烧、工业排放以及机动车使用[32].国内外研究[33-36]普遍发现,短期暴露于PM2.5可以导致儿童哮喘的门急诊就诊及住院风险增加;而对于PM2.5的长期暴露而言,即使较低的PM2.5暴露水平也与哮喘之间存在明显关联性[37].PIAMA(prevention and incidence of asthma and mite allergy)出生队列的研究[38-39]显示,早期环境颗粒物污染暴露会导致哮喘的发病风险增加,提示大气环境污染物可能导致儿童颗粒污染物接触水平上升,进而导致哮喘.本研究中,我们使用卫星反演技术获得高精度、高时空分辨率的儿童生命早期PM2.5暴露水平数据,为我国西南地区的儿童颗粒物暴露水平提供一定参考.值得注意的是,细颗粒污染物的组分在国家之间或者国内各地区之间存在一定的区域差异,因此在密切检测不同直径细颗粒污染物浓度的同时,仍需对不同地区的细颗粒污染物成分变化进行监测,以便更好地了解其对于儿童健康所造成的潜在影响. ...
1
... 除烟草烟雾暴露外,大气颗粒物浓度增加也可导致儿童颗粒物暴露水平上升[29].短期及长期环境颗粒污染物暴露都可对儿童哮喘产生不良影响[30].PM2.5相对于PM10而言,空气动力学直径更小,易于沉积在肺部而对儿童造成更大的影响.此次新修订的《室内空气质量标准》首次将PM2.5纳入检测指标,并于2023年正式实施[31].PM2.5主要来源于燃料燃烧、工业排放以及机动车使用[32].国内外研究[33-36]普遍发现,短期暴露于PM2.5可以导致儿童哮喘的门急诊就诊及住院风险增加;而对于PM2.5的长期暴露而言,即使较低的PM2.5暴露水平也与哮喘之间存在明显关联性[37].PIAMA(prevention and incidence of asthma and mite allergy)出生队列的研究[38-39]显示,早期环境颗粒物污染暴露会导致哮喘的发病风险增加,提示大气环境污染物可能导致儿童颗粒污染物接触水平上升,进而导致哮喘.本研究中,我们使用卫星反演技术获得高精度、高时空分辨率的儿童生命早期PM2.5暴露水平数据,为我国西南地区的儿童颗粒物暴露水平提供一定参考.值得注意的是,细颗粒污染物的组分在国家之间或者国内各地区之间存在一定的区域差异,因此在密切检测不同直径细颗粒污染物浓度的同时,仍需对不同地区的细颗粒污染物成分变化进行监测,以便更好地了解其对于儿童健康所造成的潜在影响. ...
1
... 除烟草烟雾暴露外,大气颗粒物浓度增加也可导致儿童颗粒物暴露水平上升[29].短期及长期环境颗粒污染物暴露都可对儿童哮喘产生不良影响[30].PM2.5相对于PM10而言,空气动力学直径更小,易于沉积在肺部而对儿童造成更大的影响.此次新修订的《室内空气质量标准》首次将PM2.5纳入检测指标,并于2023年正式实施[31].PM2.5主要来源于燃料燃烧、工业排放以及机动车使用[32].国内外研究[33-36]普遍发现,短期暴露于PM2.5可以导致儿童哮喘的门急诊就诊及住院风险增加;而对于PM2.5的长期暴露而言,即使较低的PM2.5暴露水平也与哮喘之间存在明显关联性[37].PIAMA(prevention and incidence of asthma and mite allergy)出生队列的研究[38-39]显示,早期环境颗粒物污染暴露会导致哮喘的发病风险增加,提示大气环境污染物可能导致儿童颗粒污染物接触水平上升,进而导致哮喘.本研究中,我们使用卫星反演技术获得高精度、高时空分辨率的儿童生命早期PM2.5暴露水平数据,为我国西南地区的儿童颗粒物暴露水平提供一定参考.值得注意的是,细颗粒污染物的组分在国家之间或者国内各地区之间存在一定的区域差异,因此在密切检测不同直径细颗粒污染物浓度的同时,仍需对不同地区的细颗粒污染物成分变化进行监测,以便更好地了解其对于儿童健康所造成的潜在影响. ...
1
... 除烟草烟雾暴露外,大气颗粒物浓度增加也可导致儿童颗粒物暴露水平上升[29].短期及长期环境颗粒污染物暴露都可对儿童哮喘产生不良影响[30].PM2.5相对于PM10而言,空气动力学直径更小,易于沉积在肺部而对儿童造成更大的影响.此次新修订的《室内空气质量标准》首次将PM2.5纳入检测指标,并于2023年正式实施[31].PM2.5主要来源于燃料燃烧、工业排放以及机动车使用[32].国内外研究[33-36]普遍发现,短期暴露于PM2.5可以导致儿童哮喘的门急诊就诊及住院风险增加;而对于PM2.5的长期暴露而言,即使较低的PM2.5暴露水平也与哮喘之间存在明显关联性[37].PIAMA(prevention and incidence of asthma and mite allergy)出生队列的研究[38-39]显示,早期环境颗粒物污染暴露会导致哮喘的发病风险增加,提示大气环境污染物可能导致儿童颗粒污染物接触水平上升,进而导致哮喘.本研究中,我们使用卫星反演技术获得高精度、高时空分辨率的儿童生命早期PM2.5暴露水平数据,为我国西南地区的儿童颗粒物暴露水平提供一定参考.值得注意的是,细颗粒污染物的组分在国家之间或者国内各地区之间存在一定的区域差异,因此在密切检测不同直径细颗粒污染物浓度的同时,仍需对不同地区的细颗粒污染物成分变化进行监测,以便更好地了解其对于儿童健康所造成的潜在影响. ...
1
... 除烟草烟雾暴露外,大气颗粒物浓度增加也可导致儿童颗粒物暴露水平上升[29].短期及长期环境颗粒污染物暴露都可对儿童哮喘产生不良影响[30].PM2.5相对于PM10而言,空气动力学直径更小,易于沉积在肺部而对儿童造成更大的影响.此次新修订的《室内空气质量标准》首次将PM2.5纳入检测指标,并于2023年正式实施[31].PM2.5主要来源于燃料燃烧、工业排放以及机动车使用[32].国内外研究[33-36]普遍发现,短期暴露于PM2.5可以导致儿童哮喘的门急诊就诊及住院风险增加;而对于PM2.5的长期暴露而言,即使较低的PM2.5暴露水平也与哮喘之间存在明显关联性[37].PIAMA(prevention and incidence of asthma and mite allergy)出生队列的研究[38-39]显示,早期环境颗粒物污染暴露会导致哮喘的发病风险增加,提示大气环境污染物可能导致儿童颗粒污染物接触水平上升,进而导致哮喘.本研究中,我们使用卫星反演技术获得高精度、高时空分辨率的儿童生命早期PM2.5暴露水平数据,为我国西南地区的儿童颗粒物暴露水平提供一定参考.值得注意的是,细颗粒污染物的组分在国家之间或者国内各地区之间存在一定的区域差异,因此在密切检测不同直径细颗粒污染物浓度的同时,仍需对不同地区的细颗粒污染物成分变化进行监测,以便更好地了解其对于儿童健康所造成的潜在影响. ...
0
0
1
... 除烟草烟雾暴露外,大气颗粒物浓度增加也可导致儿童颗粒物暴露水平上升[29].短期及长期环境颗粒污染物暴露都可对儿童哮喘产生不良影响[30].PM2.5相对于PM10而言,空气动力学直径更小,易于沉积在肺部而对儿童造成更大的影响.此次新修订的《室内空气质量标准》首次将PM2.5纳入检测指标,并于2023年正式实施[31].PM2.5主要来源于燃料燃烧、工业排放以及机动车使用[32].国内外研究[33-36]普遍发现,短期暴露于PM2.5可以导致儿童哮喘的门急诊就诊及住院风险增加;而对于PM2.5的长期暴露而言,即使较低的PM2.5暴露水平也与哮喘之间存在明显关联性[37].PIAMA(prevention and incidence of asthma and mite allergy)出生队列的研究[38-39]显示,早期环境颗粒物污染暴露会导致哮喘的发病风险增加,提示大气环境污染物可能导致儿童颗粒污染物接触水平上升,进而导致哮喘.本研究中,我们使用卫星反演技术获得高精度、高时空分辨率的儿童生命早期PM2.5暴露水平数据,为我国西南地区的儿童颗粒物暴露水平提供一定参考.值得注意的是,细颗粒污染物的组分在国家之间或者国内各地区之间存在一定的区域差异,因此在密切检测不同直径细颗粒污染物浓度的同时,仍需对不同地区的细颗粒污染物成分变化进行监测,以便更好地了解其对于儿童健康所造成的潜在影响. ...
1
... 除烟草烟雾暴露外,大气颗粒物浓度增加也可导致儿童颗粒物暴露水平上升[29].短期及长期环境颗粒污染物暴露都可对儿童哮喘产生不良影响[30].PM2.5相对于PM10而言,空气动力学直径更小,易于沉积在肺部而对儿童造成更大的影响.此次新修订的《室内空气质量标准》首次将PM2.5纳入检测指标,并于2023年正式实施[31].PM2.5主要来源于燃料燃烧、工业排放以及机动车使用[32].国内外研究[33-36]普遍发现,短期暴露于PM2.5可以导致儿童哮喘的门急诊就诊及住院风险增加;而对于PM2.5的长期暴露而言,即使较低的PM2.5暴露水平也与哮喘之间存在明显关联性[37].PIAMA(prevention and incidence of asthma and mite allergy)出生队列的研究[38-39]显示,早期环境颗粒物污染暴露会导致哮喘的发病风险增加,提示大气环境污染物可能导致儿童颗粒污染物接触水平上升,进而导致哮喘.本研究中,我们使用卫星反演技术获得高精度、高时空分辨率的儿童生命早期PM2.5暴露水平数据,为我国西南地区的儿童颗粒物暴露水平提供一定参考.值得注意的是,细颗粒污染物的组分在国家之间或者国内各地区之间存在一定的区域差异,因此在密切检测不同直径细颗粒污染物浓度的同时,仍需对不同地区的细颗粒污染物成分变化进行监测,以便更好地了解其对于儿童健康所造成的潜在影响. ...
1
... 除烟草烟雾暴露外,大气颗粒物浓度增加也可导致儿童颗粒物暴露水平上升[29].短期及长期环境颗粒污染物暴露都可对儿童哮喘产生不良影响[30].PM2.5相对于PM10而言,空气动力学直径更小,易于沉积在肺部而对儿童造成更大的影响.此次新修订的《室内空气质量标准》首次将PM2.5纳入检测指标,并于2023年正式实施[31].PM2.5主要来源于燃料燃烧、工业排放以及机动车使用[32].国内外研究[33-36]普遍发现,短期暴露于PM2.5可以导致儿童哮喘的门急诊就诊及住院风险增加;而对于PM2.5的长期暴露而言,即使较低的PM2.5暴露水平也与哮喘之间存在明显关联性[37].PIAMA(prevention and incidence of asthma and mite allergy)出生队列的研究[38-39]显示,早期环境颗粒物污染暴露会导致哮喘的发病风险增加,提示大气环境污染物可能导致儿童颗粒污染物接触水平上升,进而导致哮喘.本研究中,我们使用卫星反演技术获得高精度、高时空分辨率的儿童生命早期PM2.5暴露水平数据,为我国西南地区的儿童颗粒物暴露水平提供一定参考.值得注意的是,细颗粒污染物的组分在国家之间或者国内各地区之间存在一定的区域差异,因此在密切检测不同直径细颗粒污染物浓度的同时,仍需对不同地区的细颗粒污染物成分变化进行监测,以便更好地了解其对于儿童健康所造成的潜在影响. ...
1
... 除烟草烟雾暴露外,大气颗粒物浓度增加也可导致儿童颗粒物暴露水平上升[29].短期及长期环境颗粒污染物暴露都可对儿童哮喘产生不良影响[30].PM2.5相对于PM10而言,空气动力学直径更小,易于沉积在肺部而对儿童造成更大的影响.此次新修订的《室内空气质量标准》首次将PM2.5纳入检测指标,并于2023年正式实施[31].PM2.5主要来源于燃料燃烧、工业排放以及机动车使用[32].国内外研究[33-36]普遍发现,短期暴露于PM2.5可以导致儿童哮喘的门急诊就诊及住院风险增加;而对于PM2.5的长期暴露而言,即使较低的PM2.5暴露水平也与哮喘之间存在明显关联性[37].PIAMA(prevention and incidence of asthma and mite allergy)出生队列的研究[38-39]显示,早期环境颗粒物污染暴露会导致哮喘的发病风险增加,提示大气环境污染物可能导致儿童颗粒污染物接触水平上升,进而导致哮喘.本研究中,我们使用卫星反演技术获得高精度、高时空分辨率的儿童生命早期PM2.5暴露水平数据,为我国西南地区的儿童颗粒物暴露水平提供一定参考.值得注意的是,细颗粒污染物的组分在国家之间或者国内各地区之间存在一定的区域差异,因此在密切检测不同直径细颗粒污染物浓度的同时,仍需对不同地区的细颗粒污染物成分变化进行监测,以便更好地了解其对于儿童健康所造成的潜在影响. ...