上海交通大学学报(医学版), 2023, 43(6): 699-708 doi: 10.3969/j.issn.1674-8115.2023.06.006

论著 · 基础研究

miR-185-5p通过抑制巨噬细胞自噬促进胞内分枝杆菌生长

吴淇琦,1, 汪豪2, 林砺1, 晏博,3, 张舒林,1,3

1.上海交通大学医学院免疫学与微生物学系,上海 200025

2.武汉轻工大学生命科学与技术学院,武汉 430023

3.复旦大学附属公共卫生临床中心,上海 201508

miR-185-5p facilitates intracellular Mycobacterium growth via inhibiting macrophage autophagy

WU Qiqi,1, WANG Hao2, LIN Li1, YAN Bo,3, ZHANG Shulin,1,3

1.Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China

2.School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China

3.Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China

通讯作者: 张舒林,电子信箱:shulinzhang@sjtu.edu.cn。晏 博,电子信箱:bo.yan@shphc.org.cn

编委: 崔黎明

收稿日期: 2023-02-03   接受日期: 2023-04-24   网络出版日期: 2023-06-28

基金资助: 国家自然科学基金.  81871613.  81801977

Corresponding authors: ZHANG Shulin, E-mail:shulinzhang@sjtu.edu.cnYAN Bo, E-mail:bo.yan@shphc.org.cn.

Received: 2023-02-03   Accepted: 2023-04-24   Online: 2023-06-28

作者简介 About authors

吴淇琦(1997—),女,硕士生;电子信箱:wuqiqi0223@163.com。 E-mail:wuqiqi0223@163.com

摘要

目的·探究miR-185-5p在分枝杆菌感染的巨噬细胞中对自噬的调控作用和对胞内分枝杆菌生存的影响。方法·使用卡介苗(Bacillus Calmette‐Guérin,BCG)感染人单核细胞白血病细胞(THP-1)诱导分化的巨噬细胞,通过超速离心法分离细胞培养上清液中的外泌体;通过Western blotting、纳米颗粒跟踪分析(nanoparticle tracking analysis,NTA)、透射电子显微镜(transmission electron microscopy,TEM)分别对外泌体的表面标志蛋白、大小和形态进行鉴定,通过实时荧光定量PCR(quantitative polymerase chain reaction,qPCR)检测BCG感染的巨噬细胞内及外泌体中miR-185-5p的表达水平。外泌体使用PKH26染料进行荧光染色并与巨噬细胞共培养,观察巨噬细胞对外泌体的吞噬情况。通过模拟物(mimic)和抑制剂(inhibitor)实现miR-185-5p在巨噬细胞内的过表达和抑制作用,通过菌落形成单位(colony-forming unit,CFU)实验验证miR-185-5p对巨噬细胞内BCG生长存活的影响。通过Western blotting检测自噬标志物微管相关蛋白1轻链3(microtubule-associated protein 1 light chain 3,LC3)蛋白的表达,研究过表达、抑制miR-185-5p以及使用自噬抑制剂氯喹(chloroquine,CQ)对巨噬细胞自噬的影响;进一步使用SensGFP-StubRFP-LC3自噬双荧光慢病毒检测miR-185-5p对自噬流的影响。使用TargetScan、miRDB和Starbase数据库对miR-185-5p的靶基因进行预测,并使用注释、可视化和综合发现数据库(Database for Annotation,Visualization and Integrated Discovery,DAVID)工具进行基因本体(Gene Ontology,GO)分析和京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)功能富集分析。结果·超速离心法成功分离出巨噬细胞外泌体,Western blotting成功检测到外泌体标志蛋白白细胞分化抗原9(cluster differentiation 9,CD9)、肿瘤易感基因101(tumor susceptibility gene 101,TSG101);通过TEM、NTA鉴定,外泌体为双层膜结构,直径约150 nm。BCG感染后,miR-185-5p在巨噬细胞内和外泌体中的表达均显著上调(P=0.000),且其在BCG感染的巨噬细胞内的表达水平呈时间依赖性升高。外泌体与巨噬细胞共培养,可被巨噬细胞吞噬。与mimic和inhibitor的各自对照相比,mimic显著上调miR-185-5p的表达(P=0.000),而inhibitor抑制miR-185-5p的表达(P=0.002)。使用mimic引起巨噬细胞内BCG的CFU数量显著增加(P=0.000),而inhibitor则使CFU数量减少(P=0.041)。BCG感染使巨噬细胞中LC3Ⅱ蛋白的表达上调,而mimic可降低LC3Ⅱ的表达,inhibitor可升高LC3Ⅱ的表达。在CQ作用下,使用inhibitor抑制miR-185-5p仍能显著增强巨噬细胞中LC3Ⅱ的表达。自噬流检测结果显示,相比于各自的对照组,mimic组自噬体的生成明显减少(P=0.034),而inhibitor组自噬体的生成明显增加(P=0.042)。通过靶基因预测以及GO和KEGG功能富集分析发现,miR-185-5p可能通过靶向核受体亚家族1组D成员1(nuclear receptor subfamily 1 group D member 1,NR1D1Ras相关蛋白Rab-35(Ras-related protein Rab-35,RAB35细胞分裂控制蛋白42同源物(cell division control protein 42 homolog,CDC42)等基因发挥自噬调节作用。结论·分枝杆菌感染诱导巨噬细胞内及外泌体中miR-185-5p表达上调,miR-185-5p通过抑制自噬体的生成抑制巨噬细胞的自噬过程,从而促进细胞内分枝杆菌的生长及存活。

关键词: 分枝杆菌感染 ; 巨噬细胞 ; miR-185-5p ; 自噬 ; 外泌体

Abstract

Objective ·To explore the regulatory effect of miR-185-5p on autophagy in Mycobacterium-infected macrophages and its influence on the survival of intracellular Mycobacterium. Methods ·Macrophages derived from human monocytic-leukemia (THP-1) cells were infected with Bacillus Calmette-Guérin (BCG) strain. Exosomes from cell culture supernatant were isolated by ultracentrifugation, and exosome surface marker proteins, size and morphology were detected by Western blotting, nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM), respectively. The expression level of miR-185-5p in both macrophages and exosomes was detected by real time quantitative polymerase chain reaction (qPCR). The exosomes were labeled with the fluorescent dye PKH26 and co-cultured with macrophages to observe the phagocytosis of exosomes by macrophages. Subsequently, the overexpression and inhibition of miR-185-5p in macrophages were achieved by transfecting cells with miR-185-5p mimic and inhibitor, and the influence of miR-185-5p on intracellular BCG survival was detected by colony-forming units (CFU) assay. Autophagy marker microtubule-associated protein 1 light chain 3 (LC3) protein was detected by Western blotting.The effects of overexpression and inhibition of miR-185-5p and the use of autophagy inhibitor chloroquine (CQ) on macrophage autophagy were studied. The SensGFP-StubRFP-LC3 lentvirus was further employed to detect the effect of miR-185-5p on autophagic flux. Finally, TargetScan, miRDB and Starbase databases were used to predict the target genes of miR-185-5p, and the Database for Annotation, Visualization and Integrated Discovery (DAVID) was used for Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis of these predicted target genes. Results ·The macrophage exosomes were isolated by ultracentrifugation. Exosome marker proteins cluster differentiation 9 (CD9) and tumor susceptibility gene 101 (TSG101) were successfully detected by Western blotting. The exosomes had a bilayer membrane with a diameter of approximately 150 nm through TEM and NTA identification. After BCG infection, the expression of miR-185-5p was up-regulated in both macrophages and exosomes (P=0.000), and showed a time-dependent increase in macrophages. Exosomes, which were co-cultured with macrophages, can be phagocytized by macrophages. Compared with respective control of mimic and inhibitor, mimic significantly up-regulated miR-185-5p expression (P=0.000), while inhibitor inhibited miR-185-5p expression (P=0.002). miR-185-5p mimic significantly increased the number of CFU of intracellular BCG (P=0.000), while miR-185-5p inhibitor decreased the number of CFU (P=0.041). BCG infection up-regulated the expression of autophagy protein LC3Ⅱ in macrophages, while LC3Ⅱ expression was decreased by miR-185-5p mimic and increased by miR-185-5p inhibitor. CQ treatment combined with miR-185-5p inhibitor transfection still significantly increased LC3Ⅱ expression in macrophages. The SensGFP-StubRFP-LC3 lentivirus was further used to detect autophagy flux, and it was suggested that, compared with that in the respective control group, mimic significantly reduced the formation of autophagosomes (P=0.034), while inhibitor increased the formation of autophagosomes (P=0.042). Through target genes prediction and GO and KEGG functional enrichment analysis, it was found that miR-185-5p might play a role in autophagy regulation by targeting nuclear receptor subfamily 1 group D member 1 (NR1D1), Ras-related protein Rab-35 (RAB35), cell division control protein 42 homolog (CDC42), etc. Conclusion ·Mycobacterium infection can induce the up-regulation of miR-185-5p in both macrophages and exosomes, and miR-185-5p can inhibit the autophagy process of macrophages by inhibiting the formation of autophagosomes, which can promote the growth and survival of intracellular Mycobacterium.

Keywords: Mycobacterium infection ; macrophage ; miR-185-5p ; autophagy ; exosome

PDF (3396KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

吴淇琦, 汪豪, 林砺, 晏博, 张舒林. miR-185-5p通过抑制巨噬细胞自噬促进胞内分枝杆菌生长. 上海交通大学学报(医学版)[J], 2023, 43(6): 699-708 doi:10.3969/j.issn.1674-8115.2023.06.006

WU Qiqi, WANG Hao, LIN Li, YAN Bo, ZHANG Shulin. miR-185-5p facilitates intracellular Mycobacterium growth via inhibiting macrophage autophagy. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2023, 43(6): 699-708 doi:10.3969/j.issn.1674-8115.2023.06.006

结核病(tuberculosis,TB)是由结核分枝杆菌复合群(Mycobacterium tuberculosis complex,MTBC)感染引起的一种经呼吸道传播的传染性疾病;世界上约1/4的人口感染过结核分枝杆菌,TB仍然是全球公共卫生的一个主要威胁1。在MTBC感染过程中,巨噬细胞是最早遇到分枝杆菌的免疫细胞,也是分枝杆菌的主要宿主细胞。巨噬细胞可以激活细胞凋亡、自噬、活性氧/一氧化氮(reactive oxygen species/nitric oxide,ROS/NO)等信号通路来抵抗病原体入侵,在分枝杆菌感染和宿主免疫中起关键作用2-4。MTBC也进化出多种机制,如干扰吞噬体的成熟等,来逃避巨噬细胞的免疫杀伤作用5。深入研究巨噬细胞抗MTBC感染的免疫过程,以及MTBC对巨噬细胞免疫逃逸的具体机制,对于结核病新的治疗靶点的发现以及宿主靶向治疗具有重要意义。

miRNA是一种小的单链非编码RNA,长度约22 nt。miRNA可以被加载到RNA诱导沉默复合体(RNA-induced silencing complex,RISC)中,并通过miRNA介导的mRNA降解或翻译抑制来指导RISC沉默靶mRNA6。已有证据7表明,在健康和疾病状态下,巨噬细胞的免疫应答等细胞过程都受到各种miRNA的调控。病原体会诱导细胞miRNA水平的变化,表达水平改变的miRNA可以通过调节先天性和适应性免疫应答来影响疾病进展8。在我们的前期工作中,通过构建卡介苗即牛结核分枝杆菌减毒活菌株(Mycobacterium bovis Bacillus Calmette-Guérin,M. bovis BCG,BCG)和人结核分枝杆菌减毒株H37Ra菌株感染的巨噬细胞模型,提取感染的巨噬细胞外泌体进行转录组测序、生物信息学分析,并收集结核病患者的血浆标本进行验证,发现miR-185-5p是TB的一种很有潜力的新型生物标志物9。但miR-185-5p在分枝杆菌感染中的具体功能尚无研究和报道。

自噬是真核细胞内溶酶体依赖性的细胞降解途径,可以通过形成自噬体将病原体递送到溶酶体中进行降解。自噬作为一种控制细胞内病原体的先天防御机制,参与MTBC与巨噬细胞的相互作用2。GUTIERREZ等10在2004年最早报道了自噬是一种抑制BCG和人结核分枝杆菌毒株H37Rv菌株在感染的巨噬细胞中存活的防御机制:刺激巨噬细胞的自噬途径导致分枝杆菌吞噬体成熟为吞噬溶酶体,从而抑制分枝杆菌在细胞内存活。MTBC也进化出多种机制来抑制细胞自噬反应,例如上调增强细胞内存活(enhanced intracellular survival,Eis)基因、上调与自噬相关的miRNA、减弱干扰素γ(interferon-γ,IFN-γ)诱导的自噬体生物发生等11。总的来说,刺激自噬会促进巨噬细胞对MTBC的杀伤作用,而抑制自噬有利于MTBC的细胞内存活。因此,在本研究中,我们使用BCG感染人单核细胞白血病(THP-1)细胞诱导分化的巨噬细胞,进一步确认BCG感染对miR-185-5p表达的影响,并探究miR-185-5p对巨噬细胞自噬的影响以及在宿主‒病原体相互作用中发挥的功能,以期为研究TB的感染发病机制和治疗方案提供新的思路。

1 材料和方法

1.1 实验材料

1.1.1 细胞和菌株

人单核细胞白血病THP-1细胞购自上海中乔新舟生物科技有限公司。BCG来自本实验室储存传代的菌株库。

1.1.2 试剂和仪器

Middlebrook 7H9肉汤基础培养基、Middlebrook 7H11琼脂基础培养基、Middlebrook OADC增菌液购自北京索莱宝科技有限公司;罗氏培养管购自珠海贝索生物技术有限公司。RPMI 1640培养基、TRIzol、Lipofectamine 3000购自美国Thermo;胎牛血清(fetal bovine serum,FBS)购自以色列Biological Industries;佛波酯(phorbol 12-myristate 13-acetate,PMA)、PKH26荧光染料购自德国Sigma;miScriptⅡ RT加尾法试剂盒、miScript SYBR Green PCR试剂盒购自德国Qiagen;miR-185-5p模拟物及对照(mimic/mimic NC)、抑制剂及对照(inhibitor/inhibitor NC)购自广州锐博科技有限公司;SensGFP-StubRFP-LC3慢病毒购自上海吉凯基因科技有限公司。Triton X-100、qPCR引物购自生工生物工程(上海)股份有限公司;4%多聚甲醛(paraformaldehyde,PFA)、PBS、RIPA裂解液、苯甲基磺酰氟(phenylmethanesulfonyl fluoride,PMSF)、BCA蛋白浓度测定试剂盒、超敏ECL化学发光试剂盒、辣根过氧化物酶标记山羊抗兔IgG (H+L)购自上海碧云天生物技术有限公司。微管相关蛋白1轻链3(microtubule-associated protein 1 light chain 3,LC3)、白细胞分化抗原9(cluster differentiation 9,CD9)、肿瘤易感基因101(tumor susceptibility gene 101,TSG101)兔单克隆抗体购自英国Abcam(货号分别为ab192890、ab236630、ab236630)。生物安全柜、二氧化碳培养箱、qPCR仪来自美国Thermo,荧光显微镜、Leica TCS Sp8 STED共聚焦显微镜来自德国Leica,透射电子显微镜(transmission electron microscopy,TEM)来自日本JEOL,纳米颗粒跟踪分析(nanoparticle tracking analysis,NTA)仪来自德国Particle Metrix。

1.2 实验方法

1.2.1 外泌体分离鉴定、外泌体摄取

分别收集BCG感染与未感染的THP-1诱导分化的巨噬细胞培养上清液,在4 ℃下,依次按照以下条件离心:300×g、10 min,2 000×g、30 min,12 000 ×g、45 min。去除死细胞和碎片,110 000×g超速离心120 min,PBS重悬沉淀,110 000×g超速离心70 min,所得沉淀即为外泌体颗粒。将其重悬于PBS,直接使用或-80 ℃冷冻备用。首先通过Western blotting检测外泌体标志蛋白CD9和TSG101的表达。再通过NTA技术检测外泌体的粒径大小和浓度范围,样本稀释8 000~10 000倍后上机检测。最后,通过TEM进行外泌体形态鉴定:将外泌体悬液加到固定好的碳网上,室温静置20 min;之后在碳网上滴加2%磷钨酸,静置20 s,在TEM(80 kV)下观察并拍照。

将分离得到的感染BCG的巨噬细胞中的外泌体用PKH26荧光染料进行标记,将标记的外泌体(20 μg/mL)与未感染BCG的巨噬细胞共培养,使用4% PFA固定细胞,在荧光显微镜下观察不同时间点(0、12、24、48 h)细胞内PKH26荧光斑点的分布。

1.2.2 RNA提取和qPCR分析

THP-1细胞经75 nmol/L PMA诱导48 h后分化为贴壁的巨噬细胞。加入感染复数(multiplicity of infection,MOI)为10的BCG感染巨噬细胞,感染4 h后更换新鲜RPMI 1640培养基(含10% FBS),继续培养至感染12、24、48 h时收集细胞RNA。通过TRIzol法分别提取细胞RNA和外泌体RNA,使用miScriptⅡ RT加尾法试剂盒将RNA反转录为cDNA,使用miScript SYBR Green PCR试剂盒对miRNA进行qPCR检测。miR-185-5p的qPCR特异性正向引物序列为5′-TCTGGA-GAGAAAGGCAGTTCCTGA-3′,反向引物为试剂盒自带。qPCR反应程序为:95 ℃,15 min;40个循环(95 ℃,15 s;55 ℃,30 s;70 ℃,30 s)。使用U6作为内参,正向引物序列为5′-CTCGCTTCGGCAG-CACA-3′,反向引物序列为5′-AACGCTTCACGAA-TTTGCGT-3′。采用2-ΔΔCT方法计算miRNA相对表达水平。

1.2.3 CFU实验

提前配置7H11琼脂平板,即3.8 g Middlebrook 7H11琼脂基础培养基溶于180 mL蒸馏水,加1 mL甘油,121 ℃高压灭菌10 min,冷却至50~55 ℃后添加Middlebrook OADC增菌液20 mL,倾倒于平板中备用。THP-1细胞诱导贴壁后,按照Lipofectamine 3000使用说明瞬时转染miR-185-5p mimic/mimic NC和inhibitor/inhibitor NC,按照“1.2.2”方法检测转染效率。转染成功后,按照MOI为10加入BCG感染细胞4 h后,使用PBS洗涤3次,去除细胞外BCG,在新鲜培养基中继续培养细胞至BCG感染48 h。用1% Triton X-100裂解细胞,分别收集感染4、48 h的细胞内BCG,PBS连续稀释10、100倍后接种于7H11琼脂平板,37 ℃培养21 d,进行菌落形成单位(colony-forming unit,CFU)计数,分别用于分析巨噬细胞吞噬BCG和BCG在巨噬细胞中存活的情况。

1.2.4 Western blotting

LC3蛋白的Western blotting检测:THP-1细胞诱导贴壁,转染mimic/mimic NC和inhibitor/inhibitor NC 24 h后,加入BCG感染24 h,自噬抑制剂氯喹(chloroquine,CQ)处理组同时加入终浓度为10 μmol/L的CQ处理24 h;使用含1 mmol/L PMSF的RIPA裂解液裂解细胞,收集总蛋白,BCA法进行蛋白定量;使用12% SDS-PAGE凝胶,上样20 μg蛋白,在80 V、50 min及120 V、60 min条件下电泳,在300 mA、70 min条件下转膜(PVDF膜),5%脱脂奶粉室温封闭1 h;4 ℃孵育LC3抗体(1∶1 000稀释)过夜,室温孵育二抗(1∶1 000稀释)1 h后,对蛋白条带进行显影分析。LC3抗体可以同时孵育出LC3Ⅰ和LC3Ⅱ 2条蛋白条带,通常以LC3Ⅱ/内参来评估自噬活性。

CD9、TSG101蛋白的Western blotting检测:收集到的外泌体沉淀同样使用含1 mmol/L PMSF的RIPA裂解液裂解,后续步骤同LC3蛋白的Western blotting检测步骤,CD9、TSG101抗体均1∶1 000稀释。

1.2.5 自噬流检测

SensGFP-StubRFP-LC3慢病毒以MOI为50感染THP-1细胞,细胞于600 ×g、37 ℃离心90 min后,再在培养箱中感染24 h。加入2 μg/mL嘌呤霉素筛选3 d,清除未感染细胞,传代时加入1 μg/mL嘌呤霉素维持,以获得SensGFP-StubRFP-LC3稳定表达的THP-1细胞。将上述细胞铺板于玻璃底24孔板,PMA诱导细胞贴壁,转染miR-185-5p mimic和inhibitor,并加入BCG感染24 h。4% PFA固定细胞,用Hoechst染料对细胞核染色,通过Leica TCS Sp8 STED共聚焦显微镜观察细胞内荧光斑点的分布。GFP(绿色)和RFP(红色)分别用于指示LC3蛋白在自噬体和自噬溶酶体中的聚集情况;在pH中性的自噬体中,GFP和RFP一起产生黄色信号,而pH敏感的GFP信号在自噬体与酸性溶酶体融合后减弱,导致RFP的红色荧光增强。

1.2.6 生物信息学分析

使用TargetScan (https://www.targetscan.org/)、miRDB(https://www.mirdb.org/)和Starbase(https://starbase.sysu.edu.cn/starbase2/)数据库预测miRNA结合位点以及与mRNA的相互作用。通过绘制韦恩(Venn)图得到3个数据库的靶基因交集,然后使用注释、可视化和综合发现数据库(Database for Annotation,Visualization and Integrated Discovery,DAVID)工具(https://david.ncifcrf.gov/)对这些靶mRNA进行基因本体(Gene Ontology,GO)分析和京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)功能富集分析,通过R包clusterProfiler绘制可视化气泡图。

1.3 统计学分析

使用GraphPad Prism软件进行统计分析并绘图。定量资料用x±s表示。2组间比较采用独立样本t检验,多组间比较采用单因素方差分析(ANOVA)。P<0.05表示差异有统计学意义。

2 结果

2.1 BCG感染巨噬细胞使细胞内和外泌体中的miR-185-5p均表达上调

在我们之前的工作中,通过外泌体全转录组测序分析发现BCG和H37Ra感染会使外泌体中miR-185-5p的表达水平显著上调,提示miR-185-5p可能在分枝杆菌感染中有一定的作用9。为了进一步研究miR-185-5p在BCG感染中的功能,我们首先对之前的发现进行进一步验证。通过超速离心法分离外泌体,Western blotting检测到外泌体标志蛋白CD9和TSG101的表达(图1A);NTA检测外泌体粒径及浓度大小(图1B),结果显示,外泌体直径约150 nm,浓度约1010个/mL;TEM观察到外泌体的双层膜结构(图1C)。以上结果表明,提取到的外泌体的纯度和质量达标,可用于后续实验。

图1

图1   外泌体鉴定、摄取及BCG感染对巨噬细胞和外泌体中miR-185-5p表达水平的影响

Note:A. Western blotting analysis of the expression levels of exosome marker protein CD9 and TSG101. Ctrl—uninfected macrophages. B. Detection of exosome diameter and concentration by NTA. C. TEM analysis of exosome characteristics. D. The relative expression level of miR-185-5p in exosomes from macrophages with BCG infection for 48 h. E. The relative expression level of miR-185-5p in macrophages with BCG infection for 0, 12, 24 and 48 h. F. Cellular uptake of exosomes extracted from BCG-infected macrophages by uninfected macrophages after 0, 12, 24 and 48 h of co-culture. P=0.000.

Fig 1   Identification and uptake of exosomes and the effect of BCG infection on the expression of miR-185-5p


随后对外泌体RNA进行qPCR分析,发现miR-185-5p在BCG感染的巨噬细胞外泌体中的表达水平显著上调(图1D,P=0.000)。同时,还检测了BCG感染对巨噬细胞内的miR-185-5p表达的影响,发现随着感染时间增加,细胞内miR-185-5p的表达水平也逐渐上调(图1E);相比于感染0 h,感染48 h时miR-185-5p的表达水平上升幅度最大(P=0.000)。miR-185-5p在BCG感染的巨噬细胞和外泌体中均表达上调,提示miR-185-5p在分枝杆菌感染中有着重要作用。

我们还对提取到的BCG感染的巨噬细胞外泌体进行荧光染色,将其与未感染的巨噬细胞进行共培养,发现外泌体可以转移到未感染的巨噬细胞内,且在共培养48 h时巨噬细胞对外泌体的摄取量最高(图1F),提示外泌体可能作为介质进行胞间传递,且其被细胞的摄取具有时间依赖性。

2.2 miR-185-5p促进BCGTHP-1诱导分化的巨噬细胞中的存活

为了探索miR-185-5p在分枝杆菌感染中的作用,我们首先验证了miR-185-5p对胞内BCG的生长存活是否有影响。首先设计合成miR-185-5p mimic/mimic NC和inhibitor/inhibitor NC,转染THP-1诱导分化的巨噬细胞,结果显示:相比于mimic NC,mimic显著上调miR-185-5p的表达水平(图2A,P=0.000);相比于inhibitor NC,inhibitor显著抑制miR-185-5p的表达水平(图2B,P=0.002)。转染了mimic和inhibitor的巨噬细胞经BCG感染4 h和48 h后,分别收取巨噬细胞内的BCG进行CFU计数。结果显示,感染4 h时,mimic NC组与mimic组BCG的数量差异无统计学意义(P>0.05),同样inhibitor NC组与inhibitor组BCG数量差异也无统计学意义(P>0.05),表明BCG感染4 h时miR-185-5p未明显影响巨噬细胞对BCG的吞噬作用。而在BCG感染48 h时,相比于mimic NC组,mimic组BCG的CFU数量显著增加(图2C、D,P=0.000);相比于inhibitor NC组,inhibitor组BCG的CFU数量显著减少(图2E、F,P=0.041)。这些结果表明,miR-185-5p在BCG感染过程中发挥着有利于BCG生长存活、不利于巨噬细胞清除杀灭BCG的作用。

图2

图2   miR-185-5pBCG胞内存活的影响

Note:A. The relative expression level of miR-185-5p in THP-1-derived macrophages transfected with miR-185-5p mimic and mimic NC. B. The relative expression level of miR-185-5p in THP-1-derived macrophages transfected with miR-185-5p inhibitor and inhibitor NC. C. The effect of miR-185-5p up-regulation on the survival of BCG in macrophages after 4 h and 48 h of BCG infection. D. Relative quantification of BCG survival in macrophages with miR-185-5p up-regulation. E. The effect of miR-185-5p down-regulation on the survival of BCG in macrophages after 4 h and 48 h of BCG infection. F. Relative quantification of BCG survival in macrophages with miR-185-5p down-regulation. P=0.000, P=0.002, P=0.041.

Fig 2   Effect of miR-185-5p on intracellular BCG survival


2.3 miR-185-5p抑制BCG感染诱导的细胞自噬

自噬是宿主清除分枝杆菌、防御分枝杆菌感染的一种重要方式。因此,我们想要探索miR-185-5p对巨噬细胞内BCG生存的影响是否通过自噬途径实现。通过检测自噬标志蛋白LC3评估细胞自噬水平,发现与BCG未感染细胞比较,LC3Ⅱ在BCG感染的巨噬细胞中的表达增多(图3A),表明BCG感染可以有效地诱导细胞自噬。在BCG感染的巨噬细胞中,使用inhibitor抑制miR-185-5p导致LC3Ⅱ的表达升高(图3A),而使用mimic过表达miR-185-5p则降低了LC3Ⅱ的表达(图3B),表明miR-185-5p在BCG感染过程中发挥了抑制自噬的功能。

图3

图3   miR-185-5p对巨噬细胞自噬流的影响

Note:A–C. Western blotting analysis of autophagy protein LC3 Ⅱ in macrophages. A. THP-1-derived macrophages were treated with inhibitor/inhibitor NC with or without BCG infection. B. THP-1-derived macrophages were treated with mimic/mimic NC with or without BCG infection. C. THP-1-derived macrophages were transfected with miR-185-5p inhibitor followed by BCG infection and CQ treatment (10 μmol/L). D. Confocal images of LC3 protein. GFP (green) and RFP (red) indicate the aggregation of LC3 protein in autophagosomes and autophagolysosomes, respectively. E. Quantification of RFP and GFP fluorescent puncta. P=0.034, P=0.042.

Fig 3   Effect of miR-185-5p on macrophage autophagic flux


使用CQ进一步验证miR-185-5p对BCG感染的巨噬细胞中自噬流的影响。CQ可以通过破坏溶酶体的结构和功能来抑制自噬,导致LC3Ⅱ聚集。结果显示,CQ处理后,使用miR-185-5p inhibitor仍然使BCG感染的巨噬细胞中LC3Ⅱ的表达增加(图3C),表明miR-185-5p可以抑制BCG感染的巨噬细胞自噬。

为了进一步揭示miR-185-5p对自噬流的影响,我们使用SensGFP-StubRFP-LC3来跟踪LC3在自噬体和自噬溶酶体中的聚集情况。发现在BCG感染时,相比于mimic NC组,miR-185-5p mimic组GFP、RFP荧光斑点均明显减少(图3D),即早期自噬体的生成减少(图E,P=0.034);而相比于inhibitor NC组,使用inhibitor抑制miR-185-5p后则会使早期自噬体的生成显著增多(图3D、E,P=0.042)。以上结果表明,BCG感染时,通过上调miR-185-5p的表达可以抑制早期自噬体的生成,抑制细胞自噬过程,从而有利于BCG在巨噬细胞内的生长存活。

2.4 miR-185-5p潜在靶基因预测及富集分析

为了进一步探索miR-185-5p调控自噬参与分枝杆菌感染免疫的具体机制,我们通过TargetScan、miRDB、starbase数据库预测了miR-185-5p与mRNA之间的结合位点和相互作用。通过Venn图取3个数据库的交集,共获得138个靶基因(图4A、B)。GO分析和KEGG功能注释结果显示,这些基因可能参与细胞黏附过程、转录因子活性调控以及细胞内吞作用等(图4C~F)。

图4

图4   miR-185-5p潜在靶基因预测及富集分析

Note: A. Venn diagram of potential target genes of miR-185-5p. B. 138 target genes of miR-185-5p. C. GO analysis of target genes in biological process. D. GO analysis of target genes in cell component. E. GO analysis of target genes in molecular function. F. KEGG pathway analysis of target genes of miR-185-5p.

Fig 4   Prediction and enrichment analysis of potential target genes of miR-185-5p


值得特别注意的是,在这些基因中,被报道与自噬相关的基因有核受体亚家族1组D成员1(nuclear receptor subfamily 1 group D member 1,NR1D1)、Ras相关蛋白Rab-35(Ras-related protein Rab-35,RAB35)、细胞分裂控制蛋白42同源物(cell division control protein 42 homolog,CDC42)等12-14,提示miR-185-5p很可能通过直接靶向这些基因来调控细胞自噬,参与抗感染免疫过程。除了自噬相关基因,在预测到的miR-185-5p靶基因中,我们还发现了参与脂代谢途径的ATP 结合盒亚家族G成员1(ATP-binding cassette sub-family G member 1,ABCG1)、清道夫受体B类成员1(scavenger receptor class B member 1,SCARB1)基因,以及具有重要转录调控作用的丝裂原活化蛋白激酶14(mitogen-activated protein kinase 14,MAPK14)等,提示miR-185-5p还可能通过调节脂代谢和细胞因子信号通路等来参与抗分枝杆菌感染的免疫调节过程。

3 讨论

巨噬细胞是MTBC感染过程中的主要宿主细胞。巨噬细胞不仅可以为MTBC的生存提供场所,还可以启动一系列宿主反应来限制MTBC的细胞内生长。自噬在宿主防御中起着重要作用,它可以通过形成成熟的自噬溶酶体降解细菌,限制MTBC的细胞内存活10。本研究使用BCG感染THP-1诱导分化的巨噬细胞,发现BCG感染会导致细胞内和外泌体中均高表达miR-185-5p。上调miR-185-5p可以促进BCG在巨噬细胞内的生长和存活,而抑制miR-185-5p则会使巨噬细胞内BCG存活量明显降低。更有意义的是,本研究发现miR-185-5p能够调控巨噬细胞的自噬过程。BCG感染能诱导巨噬细胞自噬;上调miR-185-5p可以通过抑制早期自噬体的生成抑制细胞自噬的发生,而抑制miR-185-5p则会促进自噬体的生成,使细胞自噬活性进一步增强。这些结果表明,miR-185-5p可以通过调控巨噬细胞自噬途径来参与分枝杆菌感染的免疫过程,抑制miR-185-5p会促进巨噬细胞自噬,抑制BCG的细胞内生存,提示其可能成为结核病一种潜在的药物作用靶点。

通过miRNA mimic恢复对宿主友好的miRNA表达或通过miRNA inhibitor阻断异常的miRNA表达,实现miRNA的正向调控或负向调控,可用于疾病治疗15-16。我们发现miR-185-5p的上调有利于巨噬细胞内BCG的生存,而抑制miR-185-5p后BCG的存活量减少,提示可以使用miR-185-5p inhibitor来阻断miR-185-5p的表达,以抑制宿主细胞内的细菌生长,起到辅助治疗结核病的作用。但目前本研究仅限于体外实验,想要确定miR-185-5p作为治疗靶点的应用价值,还需要进一步使用动物模型进行体内实验,整体评估其在体内对BCG生长存活的影响,以及使用miR-185-5p inhibitor后宿主抗菌的效果。此外,目前miRNA药物的治疗也具有一定的局限性,主要问题包括miRNA稳定性差、脱靶作用、递送方式不完善等。目前,外泌体作为药物递送载体,因具有保护其内容物免于降解、体积小、免疫原性低、毒性低、药物靶向等优点,而具有广阔的应用前景17-18。本研究发现BCG感染不仅诱导巨噬细胞内高表达miR-185-5p,在巨噬细胞分泌的外泌体中也含有高水平的miR-185-5p,且外泌体可以被未感染的巨噬细胞捕获。这提示外泌体在miR-185-5p的应用中可能发挥以下作用:一方面,外泌体作为天然载体,可保护miR-185-5p免受核糖核酸酶(RNase)的降解,为其递送方式提供了思路;另一方面,外泌体还可能将miR-185-5p传递到未感染巨噬细胞或其他免疫细胞中发挥功能。这些都是值得后续深入研究的内容。

寻找新的结核病标志物,并探索其在感染免疫以及宿主-病原相互作用中的机制,对开发新的结核病治疗靶点、完善结核病防控策略具有重要意义。在之前的研究中,我们发现了外泌体miR-185-5p作为结核病临床诊断标志物的应用价值9。在本研究中,我们发现了miR-185-5p作为结核病治疗靶点的潜力。miR-185-5p能够通过调节自噬在BCG感染中发挥重要作用,并通过预测发现NR1D1CDC42可能是其直接靶基因。研究表明,NR1D1可以调节自噬和溶酶体的生物发生12,抑制白细胞介素10(interleukin,IL-10)基因的表达19,改善细胞对分枝杆菌的清除作用,提供对分枝杆菌感染的保护作用;还有研究20显示,miR-185-5p可以通过CDC42/JNK通路调控巨噬细胞的炎症和吞噬作用。这些研究为我们的结果提供了支持,并为后续研究miR-185-5p调控自噬的具体机制提供了思路。另外,我们还发现miR-185-5p可能直接靶向脂代谢相关基因如ABCG121,以及转录调控相关基因如MAPK1422。这些基因均被报道与分枝杆菌感染相关,提示miR-185-5p还可能通过调节脂代谢过程或细胞因子转录调控来发挥相应的作用。miR-185-5p在自噬调控之外的作用也值得我们进一步深入研究。

作者贡献声明

吴淇琦、汪豪、林砺、晏博和张舒林参与了实验设计,吴淇琦负责实验操作,吴淇琦和汪豪负责数据分析,吴淇琦、汪豪、晏博和张舒林参与了论文的写作和修改。所有作者均阅读并同意了最终稿件的提交。

AUTHOR's CONTRIBUTIONS

The study was designed by WU Qiqi, WANG Hao, LIN Li, YAN Bo and ZHANG Shulin. The experiments were performed by WU Qiqi. The results were analyzed by WU Qiqi and WANG Hao. The manuscript was drafted and revised by WU Qiqi, WANG Hao, YAN Bo and ZHANG Shulin. All the authors have read the last version of paper and consented for submission.

利益冲突声明

所有作者声明不存在利益冲突。

COMPETING INTERESTS

All authors disclose no relevant conflict of interests.

参考文献

World Health Organization. Global tuberculosis report 2022 [EB/OL]. (2022-10-17) [2023-04-19]. https://www.who.int/publications/i/item/9789240061729.

[本文引用: 1]

SIQUEIRA M D S, RIBEIRO R M, TRAVASSOS L H. Autophagy and its interaction with intracellular bacterial pathogens[J]. Front Immunol, 2018, 9: 935.

[本文引用: 2]

STUTZ M D, ALLISON C C, OJAIMI S, et al. Macrophage and neutrophil death programs differentially confer resistance to tuberculosis[J]. Immunity, 2021, 54(8): 1758-1771.e7.

TUR J, PEREIRA-LOPES S, VICO T, et al. Mitofusin 2 in macrophages links mitochondrial ROS production, cytokine release, phagocytosis, autophagy, and bactericidal activity[J]. Cell Rep, 2020, 32(8): 108079.

[本文引用: 1]

ZHAI W J, WU F J, ZHANG Y Y, et al. The immune escape mechanisms of Mycobacterium tuberculosis[J]. Int J Mol Sci, 2019, 20(2): 340.

[本文引用: 1]

FABIAN M R, SONENBERG N. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC[J]. Nat Struct Mol Biol, 2012, 19(6): 586-593.

[本文引用: 1]

SAMPATH P, PERIYASAMY K M, RANGANATHAN U D, et al. Monocyte and macrophage miRNA: potent biomarker and target for host-directed therapy for tuberculosis[J]. Front Immunol, 2021, 12: 667206.

[本文引用: 1]

CHANDAN K, GUPTA M, SARWAT M. Role of host and pathogen-derived microRNAs in immune regulation during infectious and inflammatory diseases[J]. Front Immunol, 2019, 10: 3081.

[本文引用: 1]

KAUSHIK A C, WU Q Q, LIN L, et al. Exosomal ncRNAs profiling of mycobacterial infection identified miRNA-185-5p as a novel biomarker for tuberculosis[J]. Brief Bioinform, 2021, 22(6): bbab210.

[本文引用: 3]

GUTIERREZ M G, MASTER S S, SINGH S B, et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages[J]. Cell, 2004, 119(6): 753-766.

[本文引用: 2]

LAM A, PRABHU R, GROSS C M, et al. Role of apoptosis and autophagy in tuberculosis[J]. Am J Physiol Lung Cell Mol Physiol, 2017, 313(2): L218-L229.

[本文引用: 1]

CHANDRA V, BHAGYARAJ E, NANDURI R, et al. NR1D1 ameliorates Mycobacterium tuberculosis clearance through regulation of autophagy[J]. Autophagy, 2015, 11(11): 1987-1997.

[本文引用: 2]

MINOWA-NOZAWA A, NOZAWA T, OKAMOTO-FURUTA K, et al. Rab35 GTPase recruits NDP52 to autophagy targets[J]. EMBO J, 2017, 36(18): 2790-2807.

LI C S, LI Z Z, SONG L X, et al. GEFT inhibits autophagy and apoptosis in rhabdomyosarcoma via activation of the Rac1/Cdc42-mTOR signaling pathway[J]. Front Oncol, 2021, 11: 656608.

[本文引用: 1]

LIU Y H, NIE H G, DING Y, et al. MiRNA, a new treatment strategy for pulmonary fibrosis[J]. Curr Drug Targets, 2021, 22(7): 793-802.

[本文引用: 1]

HINKEL R, RAMANUJAM D, KACZMAREK V, et al. AntimiR-21 prevents myocardial dysfunction in a pig model of ischemia/reperfusion injury[J]. J Am Coll Cardiol, 2020, 75(15): 1788-1800.

[本文引用: 1]

LIANG Y, DUAN L, LU J, et al. Engineering exosomes for targeted drug delivery[J]. Theranostics, 2021, 11(7): 3183-3195.

[本文引用: 1]

LIANG G F, ZHU Y L, ALI D J, et al. Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer[J]. J Nanobiotechnology, 2020, 18(1): 10.

[本文引用: 1]

CHANDRA V, MAHAJAN S, SAINI A, et al. Human IL10 gene repression by Rev-erbα ameliorates Mycobacterium tuberculosis clearance[J]. J Biol Chem, 2013, 288(15): 10692-10702.

[本文引用: 1]

MA X R, LIU H F, ZHU J, et al. MiR-185-5p regulates inflammation and phagocytosis through CDC42/JNK pathway in macrophages[J]. Genes (Basel), 2022, 13(3): 468.

[本文引用: 1]

YE Y, LIU J, GUO Y, et al. PPARγ ameliorates Mycobacterium tuberculosis H37Ra-induced foamy macrophage formation via the ABCG1-dependent cholesterol efflux pathway in THP-1 macrophages[J]. Front Microbiol, 2022, 13: 829870.

[本文引用: 1]

HÖLSCHER C, GRÄB J, HÖLSCHER A, et al. Chemical p38 MAP kinase inhibition constrains tissue inflammation and improves antibiotic activity in Mycobacterium tuberculosis-infected mice[J]. Sci Rep, 2020, 10(1): 13629.

[本文引用: 1]

/