上海交通大学学报(医学版), 2023, 43(8): 977-987 doi: 10.3969/j.issn.1674-8115.2023.08.005

论著 · 基础研究

PRPS1 I72位点突变对急性淋巴细胞白血病耐药性的影响及其机制研究

崔芷嫣,1,2, 陈尧1,2, 陶悦1,2, 沈树红1, 李慧,1,2

1.上海交通大学医学院附属上海儿童医学中心儿科转化医学研究所,国家卫生健康委员会儿童血液肿瘤重点实验室,上海 200127

2.上海市儿科临床分子诊断重点实验室,上海 200127

Effects of PRPS1 I72 mutations on drug resistance in acute lymphoblastic leukemia and its mechanisms

CUI Zhiyan,1,2, CHEN Yao1,2, TAO Yue1,2, SHEN Shuhong1, LI Hui,1,2

1.Key Laboratory of Pediatric Hematology and Oncology of National Health Commission, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China

2.Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai 200127, China

通讯作者: 李 慧,电子信箱:lihui@scmc.com.cn

编委: 邢宇洋

收稿日期: 2023-03-05   接受日期: 2023-05-15   网络出版日期: 2023-08-28

基金资助: 国家自然科学基金.  82070159
上海市自然科学基金.  22ZR1440000
浦东新区科技发展基金.  PKJ2020-Y05

Corresponding authors: LI Hui, E-mail:lihui@scmc.com.cn.

Received: 2023-03-05   Accepted: 2023-05-15   Online: 2023-08-28

作者简介 About authors

崔芷嫣(1997—),女,硕士生;电子信箱:cuicui0724@163.com。 E-mail:cuicui0724@163.com

摘要

目的·研究磷酸核糖焦磷酸合成酶1(phosphoribosyl pyrophosphate synthetase 1,PRPS1)I72位点突变是否能使急性淋巴细胞白血病(acute lymphoblastic leukemia,ALL)细胞对巯嘌呤类化学治疗(化疗)药物6-巯基嘌呤(6-mercaptopurine,6-MP)、6-硫代鸟嘌呤(6-thioguanine,6-TG)产生耐药性,并解释其作用机制。方法·将临床上已发现的PRPS1基因的各突变(I72F、R177S、V316L)和2个ALL细胞系(KOPN72bi和RS4;11)中存在的PRPS1基因突变(V208A、V289A)分别插入融合了绿色荧光蛋白(green fluorescent protein,GFP)的载体pGV303中,用已证明的对巯嘌呤类化疗药耐药的PRPS1 A190T突变为阳性对照,对该类药不耐药的空载体pGV303(Vector)、PRPS1野生型(wild type,WT)及PRPS1 I72V突变为阴性对照。将上述构建好的载体瞬时转染入HEK-293T细胞(简称293T细胞)中,并采用蛋白质印迹法(Western blotting)检测PRPS1各突变体在293T细胞中的蛋白表达情况。采用药物敏感性实验检测并计算6-MP或6-TG对上述瞬转PRPS1各突变体的293T细胞的半数抑制浓度(half maximal inhibitory concentration,IC50)。随后,除PRPS1 I72F和I72V之外,将第72位异亮氨酸(isoleucine,I)变成其他氨基酸的多个突变即I72M、I72L、I72N、I72S、I72T分别插入载体pGV303中,瞬时转染入293T细胞后采用Western blotting、药物敏感性实验检测各突变体在293T细胞中的蛋白表达情况以及6-MP或6-TG的IC50。采用慢病毒感染法将PRPS1 WT、I72F、I72V、A190T及载体pGV303感染REH细胞系,通过流式细胞术分选GFP阳性细胞以获得PRPS1各突变体稳定表达的细胞,并采用Western blotting及药物敏感性实验检测各突变体在REH细胞中的蛋白表达情况以及6-MP或6-TG的IC50,用以验证293T细胞获得的药物敏感性实验结果。采用Annexin Ⅴ/DAPI双染法评估各REH细胞系的凋亡情况,并通过Western blotting检测各REH细胞系的DNA损伤相关蛋白[S139位点磷酸化的组蛋白H2AX(phosphorylated H2AX-S139,γ-H2AX)、磷酸化的细胞周期检验点激酶2(phosphorylated check point kinase 2,pCHK2)]和细胞凋亡相关蛋白聚(腺苷二磷酸核糖)聚合酶剪切体[cleaved poly(ADP-ribose)polymerase,cleaved PARP]的表达水平。使用PDB数据库(Protein Data Bank)中编号为2HCR(PDB code 2HCR)的PRPS1晶体结构图,通过三维成像及PyMOL软件预测并绘制I72位点、I72V和I72F的氨基酸残基及空间构象图。结果·Western blotting结果显示,瞬时转染的外源性PRPS1各突变蛋白在293T细胞中成功表达;药物敏感性实验结果显示,表达PRPS1 I72F、R177S、V316L、V208A与阳性对照A190T的293T细胞对6-MP或6-TG的IC50均远高于表达V289A及阴性对照Vector、PRPS1 WT、PRPS1 I72V的细胞(均P=0.000)。将第72位异亮氨酸变成其他氨基酸后,Western blotting结果显示瞬时转染的外源性PRPS1 I72位点的各突变蛋白在293T细胞中成功表达;药物敏感性实验结果显示,表达PRPS1 I72M、I72F、I72L、I72N、I72S、I72T与A190T的293T细胞对6-MP或6-TG的IC50均远高于表达Vector、PRPS1 WT、PRPS1 I72V的细胞(均P=0.000)。慢病毒感染REH细胞后,Western blotting结果显示在已构建的稳定细胞系中PRPS1 WT、A190T、I72F、I72V的蛋白高表达且表达量相似;药物敏感性实验结果显示,表达PRPS1 I72F、A190T的REH细胞对6-MP或6-TG的IC50均远高于表达Vector、PRPS1 WT、PRPS1 I72V的细胞(均P=0.000),与293T细胞中瞬时转染得到的药物敏感性结果一致。Annexin Ⅴ/DAPI双染法、DNA损伤和凋亡相关蛋白的Western blotting检测的结果均显示,经6-MP处理后,表达PRPS1 A190T、I72F的REH细胞系的DNA损伤和凋亡率明显低于表达Vector、PRPS1 WT、PRPS1 I72V的细胞(均P=0.000)。蛋白结构分析结果显示,PRPS1 I72F会使PRPS1的空间构象发生改变。结论·PRPS1 I72F、R177S、V316L、V208A、I72M、I72L、I72N、I72S、I72T突变可使细胞获得对巯嘌呤类化疗药的耐药性,PRPS1 V289A、I72V突变不影响细胞对巯嘌呤类化疗药的敏感性。293T中的药物敏感性实验结果和REH中的药物敏感性实验结果一致,证明293T细胞可以作为检测PRPS1突变对巯嘌呤类化疗药物耐药性的快速研究模型。PRPS1 I72位点突变对巯嘌呤类化疗药耐药性的影响可能与PRPS1结构发生改变有关。

关键词: 急性淋巴细胞白血病 ; 耐药复发 ; 磷酸核糖焦磷酸合成酶1 ; 巯嘌呤

Abstract

Objective ·To study whether mutations at the I72 site of phosphoribosyl pyrophosphate synthetase 1 (PRPS1) can induce resistance in acute lymphoblastic leukemia (ALL) cells to thiopurine chemotherapy drugs 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG), and explain their mechanisms of action. Methods ·The PRPS1 gene mutations (I72F, R177S and V316L) found in clinical practice and PRPS1 gene mutations (V208A and V289A) present in two ALL cell lines (KOPN72bi and RS4;11) were constructed into the vector pGV303 fused with green fluorescent protein (GFP), respectively. The PRPS1 A190T mutation that has been proven to be resistant to thiopurine chemotherapy drugs was used as the positive control, and the empty vector pGV303 (Vector), PRPS1 wild-type (WT) and PRPS1 I72V were used as the negative controls. The various mutants of PRPS1 were transiently transfected into HEK-293T cells (referred to as 293T cells), and the expression of these exogenous PRPS1 was detected by Western blotting. The half maximal inhibitory concentration (IC50) of 6-MP or 6-TG on the above 293T cell lines transiently transfected with PRPS1 mutants was detected and calculated by drug sensitivity experiments. Subsequently, in addition to PRPS1 I72F and I72V, multiple mutations I72M, I72L, I72N, I72S and I72T were constructed into the vector pGV303, respectively, by changing the isoleucine (I) at position 72 into other amino acids. The various mutants were transiently transfected into 293T cells, respectively, and the protein expression of each mutant and IC50 values of 6-MP or 6-TG were detected by Western blotting and drug sensitivity experiments. PRPS1 WT, I72F, I72V, A190T and pGV303 vectors were transfected into REH cell lines by lentivirus infection, and GFP-positive cells were sorted by flow cytometry to obtain cells with stable expression of PRPS1 mutants. The protein expression of each mutant in REH cells and IC50 values of 6-MP or 6-TG were detected by Western blotting and drug sensitivity experiments to verify the results of drug sensitivity experiments obtained by 293T cells. Annexin V/DAPI double staining was used to evaluate the apoptosis of each REH cell line, and Western blotting was used to detect the levels of DNA damage-related proteins [phosphorylation at S139 of histone H2AX (phosphorylated H2AX-S139, γ-H2AX), phosphorylated check point kinase 2 (pCHK2)], and apoptosis-related protein cleaved poly (ADP-ribose) polymerase (cleaved PARP) in each REH cell line. The diagrams of amino acid residues and spatial conformations of I72 locus, I72V and I72F were predicted and drawn through three-dimensional imaging and PyMOL software by using the crystal structure data of PRPS1-numbered 2HCR (PDB code 2HCR) in the PDB (Protein Data Bank) database. Results ·Western blotting results showed that the transiently transfected exogenous PRPS1-mutated proteins were successfully expressed in 293T cells. The drug sensitivity experiment results showed that the IC50 values of 6-MP or 6-TG in 293T cells expressing PRPS1 I72F, R177S, V316L, V208A and the positive control A190T were much higher than those in cells expressing V289A and the negative control Vector, PRPS1 WT and I72V (all P =0.000). After mutating the isoleucine (I) at position 72 with other amino acids, Western blotting results showed successful expression of exogenous PRPS1-mutated proteins at position I72 after transient transfection in 293T cells. Drug sensitivity experiments revealed the IC50 values of 6-MP or 6-TG in 293T cells expressing PRPS1 I72M, I72F, I72L, I72N, I72S, I72T and positive control A190T were much higher than those in cells expressing negative control Vector, PRPS1 WT and I72V (all P=0.000). Western blotting results showed that the protein expression levels of PRPS1 WT, A190T, I72F and I72V in the REH stable cell lines constructed by lentivirus were high and similar. The drug sensitivity experiment results showed that the IC50 values of 6-MP or 6-TG in REH cells expressing PRPS1 I72F and positive control A190T were much higher than those in cells expressing negative control Vector, PRPS1 WT and I72V (all P=0.000), which was consistent with the drug sensitivity results obtained by transient transfection in 293T cells. The results of Annexin V/DAPI double staining method and the detection of DNA damage and apoptosis-related proteins by Western blotting showed that after 6-MP treatment, the DNA damage and apoptosis rates of REH cell lines expressing PRPS1 A190T and I72F were significantly lower than those of cells expressing negative control Vector, PRPS1 WT and I72V (all P=0.000). The protein structure analysis results showed that PRPS1 I72F could change the conformation of PRPS1. Conclusion ·The PRPS1 I72F, R177S, V316L, V208A, I72M, I72L, I72N, I72S and I72T mutations can confer drug resistance to the thiopurine chemotherapy drugs in cells, while the PRPS1 V289A and I72V mutations do not affect cell sensitivity to the thiopurine chemotherapy drugs. The drug sensitivity experiment results in 293T cells are consistent with those in REH cells, demonstrating that 293T cells can serve as a rapid research model for detecting the resistance of PRPS1 mutations to thiopurine chemotherapy drugs. The effects of the PRPS1 I72 mutations on the resistance of the thiopurine chemotherapy drugs may be related to changes in the structure of PRPS1.

Keywords: acute lymphoblastic leukemia (ALL) ; drug resistance and relapse ; phosphoribosyl pyrophosphate synthetase 1 (PRPS1) ; thiopurine

PDF (3278KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

崔芷嫣, 陈尧, 陶悦, 沈树红, 李慧. PRPS1 I72位点突变对急性淋巴细胞白血病耐药性的影响及其机制研究. 上海交通大学学报(医学版)[J], 2023, 43(8): 977-987 doi:10.3969/j.issn.1674-8115.2023.08.005

CUI Zhiyan, CHEN Yao, TAO Yue, SHEN Shuhong, LI Hui. Effects of PRPS1 I72 mutations on drug resistance in acute lymphoblastic leukemia and its mechanisms. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2023, 43(8): 977-987 doi:10.3969/j.issn.1674-8115.2023.08.005

急性淋巴细胞白血病(acute lymphoblastic leukemia,ALL)是一种以早期淋巴干细胞或祖细胞的异常克隆性增殖并伴随骨髓中正常造血细胞的耗竭为特征的白血病1。研究2显示,ALL在成人和儿童中均可发生,在儿童中最为常见,占儿童急性白血病的75%~80%。目前,随着危险度分层的联合治疗方案的实施,儿童ALL的长期存活率已提高至90%以上3,但仍有约15%的患儿在接受治疗后出现复发且预后很差4。因此,耐药、复发是儿童ALL治疗失败和患儿死亡的重要原因,探究其耐药、复发机制并优化治疗方案对于ALL患儿意义重大。

磷酸核糖焦磷酸合成酶(phosphoribosyl pyrophosphate synthetase,PRPS)是核苷酸合成途径中的限速酶,可催化核糖-5-磷酸合成磷酸核糖焦磷酸(phosphoribosyl pyrophosphate,PRPP),而PRPP是核苷酸合成的前体5。PRPS1是PRPS发挥功能的最主要的亚型,且在人体绝大部分组织中均有表达6。生理状态下,PRPS1是一个由3个同源二聚体构成的六聚体,呈高度对称的螺旋状结构7;其中,每个同源二聚体都含有1个活性位点和2个高度保守的变构调节位点8。迄今为止,在PRPS1基因中发现的突变均为错义突变,且PRPS1基因突变会导致其编码的蛋白结构发生改变,进而影响PRPS1活性。相关研究9-11显示,升高或降低PRPS1的活性会导致个体的嘌呤、嘧啶核苷酸代谢紊乱,进而诱发一系列疾病,如进行性神经性腓骨肌萎缩症、X染色体连锁非综合征性感音神经性耳聋2型、Arts综合征等。本课题组的前期研究12显示,ALL患儿存在多位点的复发特异性PRPS1基因突变,这也是儿童ALL研究领域中的首次发现。

6-巯基嘌呤(6-mercaptopurine,6-MP)、6-硫代鸟嘌呤(6-thioguanine,6-TG)是最常用的巯嘌呤类化学治疗(化疗)药物,也是ALL联合化疗法的主要药物;作为前体性药物,其二者均可通过嘌呤补救途径转化为细胞毒性的硫鸟嘌呤核苷酸掺入正在合成的DNA中,引起DNA的错配修复,最终导致DNA双链断裂及细胞凋亡13。研究12发现,突变的PRPS1基因所编码的PRPS1突变体蛋白可通过解除ADP/GDP对PRPS1的负反馈抑制使PRPS1活性上升,最终导致ALL细胞对6-MP、6-TG耐药;其中,PRPS1 A190T突变是ALL中PRPS1的热点突变。目前,临床上已新发现了诸多PRPS1突变位点,但其对药物敏感性的影响尚不明确。

本研究通过体外细胞实验检测了ALL患者中存在的未验证功能变化的新突变PRPS1 I72F、R177S和V316L(相关信息见表1)以及来自2个ALL细胞系(KOPN72bi和RS4;11,相关信息见表2)中的新突变PRPS1 V208A、V289A14对巯嘌呤类药物敏感性的影响,同时对PRPS1 I72位点改变为不同氨基酸(相关信息见表3)后引起ALL细胞对巯嘌呤类化疗药产生不同的药物敏感性的可能机制做了初步探讨,以期为临床上ALL的复发治疗提供一定的启示。

表1   ALL患者中未验证功能变化的 PRPS1 突变的信息

Tab 1  Information of PRPS1 mutations with unverified functional changes in patients with ALL

Sample IDGenderImmuno-phenotypeAllele changeAmino acid changeRelapse time/dTime of relapseSubtype
CCCG2018MB-ALLA>TI72F638early relapseBCR_ABL1
ALL208MB-ALLA>CR177S341early relapsePAX5_MPRIP
ALL086MB-ALLG>CV316L427early relapseETV6_RUNX1

Note:Early relapse means <36 months after initial diagnosis of ALL, and late ralapse means ≥36 months after completion of primary treatment.

新窗口打开| 下载CSV


表2   已报道的ALL细胞中未验证功能变化的 PRPS1 突变的信息

Tab 2  Information of reported PRPS1 mutations with unverified functional changes in ALL cells

ALL cell lineLineageGeneMutationAmino acid change
KOPN72biBCP-ALLPRPS1c.623T>CV208A
RS4;11BCP-ALLPRPS1c.866T>CV289A

Note: BCP-ALL—B-cell precursor acute lymphoblastic leukaemia.

新窗口打开| 下载CSV


表3   PRPS1 I72位点的随机突变

Tab3  Random mutations at PRPS1 I72 locus

Amino acid changeAllele change
I72MC>G
I72VA>G
I72FA>T
I72LA>C
I72NT>A
I72ST>G
I72TT>C

新窗口打开| 下载CSV


1 材料与方法

1.1 实验材料

1.1.1 细胞与质粒

人胚肾细胞系HEK-293T(简称293T)、人急性B淋巴细胞白血病细胞系REH均购自中国科学院典型培养物保藏委员会细胞库。

慢病毒包装质粒pMD2.G和psPAX2均购自美国Addgene公司,携带有绿色荧光蛋白(green fluorescent protein,GFP)标签的pGV303质粒购自上海吉凯基因医学科技股份有限公司。重组质粒pGV303 PRPS1 WT(携带野生型PRPS1基因编码区序列)、pGV303 PRPS1 A190T(携带具有A190T突变位点的PRPS1基因编码区序列)由本实验室前期构建。重组质粒pGV303 PRPS1 I72V、I72F、R177S、V316L、V208A、V289A、I72M、I72L、I72N、I72S、I72T(分别携带具有I72V、I72F、R177S、V316L、V208A、V289A、I72M、I72L、I72N、I72S、I72T突变位点的PRPS1基因编码区序列)均由本实验室通过KOD高保真酶以pGV303 PRPS1 WT质粒为模板进行环状PCR构建而成(所有质粒均进行了DNA测序,以确保质粒构建正确)。

1.1.2 主要试剂与仪器

DMEM培养基、1×磷酸盐缓冲液(1×PBS)、1×胰蛋白酶-EDTA溶液(1×TE)、青霉素-链霉素、RPMI 1640培养基(Gibco,美国),胎牛血清(fetal bovine serum,FBS)(苏州依科赛生物科技股份有限公司),IRDye® 800CW荧光标记的山羊抗兔IgG(LI-COR,美国),Cell Titer-Glo试剂盒(Promega,美国),6-MP、6-TG(Sigma,美国),多功能成像系统(Bio-rad,美国),Annexin V/DAPI凋亡检测试剂盒(BD,美国),jetPRIME®转染试剂及缓冲液(Polyplus-transfection,法国),MoFlo XDP超速流式细胞分选仪(Beckman Coulter,德国),多功能酶标仪(Biotek,美国)。

1.2 实验方法

1.2.1 细胞培养

293T细胞(贴壁细胞)采用含10% FBS、100 U/mL青霉素和100 μg/mL链霉素的DMEM培养基进行培养。REH细胞(悬浮细胞)采用含10% FBS、100 U/mL青霉素和100 μg/mL链霉素的RPMI 1640培养基进行培养。所有细胞的培养条件均为37 ℃、5% CO2,取对数生长期的细胞用于后续实验。

1.2.2 瞬时转染及蛋白表达检测

根据jetPRIME®转染试剂说明书配制jetPRIME®转染混合液,分别向其中添加重组质粒(包括pGV303 PRPS1 WT、A190T、I72V、I72F、R177S、V316L、V208A、V289A、I72M、I72L、I72N、I72S、I72T)以及空载体pGV303,制备含上述14种质粒的转染混合液。将293T细胞以1×106个/孔接种于6孔板中,培养24 h后向其中分别添加上述14种转染混合液,继续培养24 h后使用荧光显微镜检测各转染后细胞的GFP阳性率。待GFP阳性率≥70%时,使用蛋白质印迹法(Western blotting)检测293T细胞中各外源性PRPS1的表达,以转染pGV303空载体的细胞为阴性对照;待外源性PRPS1均有良好表达后,收集细胞并用于后续实验。

1.2.3 药物敏感性实验检测经6-MP或6-TG处理的各293T细胞的IC50

分别将“1.2.2”部分获得的能够表达pGV303蛋白以及pGV303 PRPS1 WT、A190T、I72V、I72F、R177S、V316L、V208A、V289A、I72M、I72L、I72N、I72S和I72T蛋白的293T细胞重悬为单细胞并计数,以4×103个/孔接种于96孔板中。培养24 h后,分别向其中添加待测药物6-MP或6-TG,6-MP或6-TG的质量终浓度均依次为0、0.02、0.05、0.14、0.41、1.23、3.70、11.11、33.33、100 μg/mL;每个浓度、每种细胞均设置3个复孔。药物处理72 h后,使用Cell Titer-Glo试剂盒测定其细胞活力,使用多功能酶标仪读取相对发光强度(relative light unit,RLU)。以各组中药物质量终浓度为0的细胞的RLU作为空白对照,计算各浓度药物下的细胞存活率(cell viability,CV)及半数抑制浓度(half maximal inhibitory concentration,IC50),实验重复3次。选取表达pGV303 PRPS1 A190T蛋白的293T细胞为对6-MP或6-TG耐药的阳性对照,表达pGV303蛋白、pGV303 PRPS1 WT和I72V蛋白的293T细胞为对6-MP或6-TG不耐药的阴性对照。当待检测细胞IC50>阴性对照IC50P<0.05时,我们认为该细胞对该药物具有耐药性。

1.2.4 慢病毒包装、细胞感染及蛋白表达检测

将重组质粒pGV303 PRPS1 WT、A190T、I72F、I72V及空载体pGV303分别与包装慢病毒质粒pMD2.G和psPAX2混合后,添加至配制好的jetPRIME®转染混合液中,以制备含上述5种质粒的慢病毒转染混合液。将293T细胞以4×106个/皿接种于培养皿中,培养24 h后向其中分别添加上述5种慢病毒转染混合液,培养48、72 h后收集上清液并进行浓缩。

向REH细胞(2×106个)中分别添加上述5种病毒原液(100 μL)进行感染,培养24 h后换液。待细胞生长至合适密度时,用MoFlo XDP超速流式细胞分选仪分选出GFP阳性表达的细胞并继续进行培养,使用Western blotting检测REH细胞中各外源性PRPS1的表达,以转染pGV303空载体的细胞为阴性对照。待外源性PRPS1均有良好表达后,取生长状态良好并处于对数生长期的REH细胞用于后续研究。

1.2.5 药物敏感性实验检测经6-MP或6-TG处理的各REH细胞的IC50

分别将“1.2.4”部分获得的能够表达pGV303蛋白以及pGV303 PRPS1 WT、A190T、I72F和I72V蛋白的REH细胞重悬为单细胞并计数,以1.2×104个/孔接种于96孔板中进行培养,而后分别向其中加入待测药物6-MP或6-TG,继续培养72 h后使用Cell Titer-Glo试剂盒测定其细胞活力,并计算CV及IC50。其中,药物浓度、实验处理等均与“1.2.3”部分相一致。选取表达pGV303 PRPS1 A190T蛋白的REH细胞为对6-MP或6-TG耐药的阳性对照,表达pGV303蛋白、pGV303 PRPS1 WT和I72V蛋白的REH细胞为对6-MP或6-TG不耐药的阴性对照。细胞耐药性评判原则亦同前。

1.2.6 Annexin Ⅴ/DAPI双染法检测细胞凋亡

分别将“1.2.4”部分获得的5种REH细胞以2×106个/孔接种于12孔板中;其中,用10 μg/mL的6-MP处理48 h的细胞为实验组,不做处理的为对照组。经计数后收集各组细胞,采用Annexin V/DAPI凋亡检测试剂盒对上述细胞进行染色,并于流式细胞仪上检测其凋亡率。实验组和对照组均设置3个复孔。

1.2.7 Western blotting检测REH细胞中DNA损伤和细胞凋亡相关蛋白的表达

采用Western blotting对“1.2.6”部分中实验组细胞的DNA损伤和细胞凋亡相关蛋白进行检测,具体操作参照说明书进行。其中,使用的一抗(兔抗人抗体)为β-actin、细胞周期检验点激酶2(check point kinase 2,CHK2)抗体、磷酸化的CHK2(phosphorylated CHK2,pCHK2)抗体、H2AX抗体、S139位点磷酸化的组蛋白H2AX(phosphorylated H2AX-S139,γ-H2AX)抗体、聚(腺苷二磷酸核糖)聚合酶剪切体 [cleaved poly(ADP-ribose)polymerase,cleaved PARP]抗体、total PARP(总PARP)抗体,工作浓度均为1∶1 000;使用的二抗为IRDye® 800CW荧光标记的山羊抗兔IgG,工作浓度为1∶100 000。

1.2.8 蛋白质结构分析

采用蛋白质三维结构建模技术对PRPS1 I72位点、PRPS1 I72F和I72V的氨基酸残基及空间构象进行分析,具体步骤如下:①使用PDB数据库查找PRPS1 I72位点的蛋白质结构图,采用PDB数据库中编号为2HCR(PDB code 2HCR)的PRPS1蛋白结构图为本文PRPS1 I72位点的蛋白质结构图。②基于PDB code 2HCR的晶体结构,使用三维成像技术模拟PRPS1 I72F、PRPS1 I72V的氨基酸残基及空间构象,并使用PyMOL软件绘制相应氨基酸残基及空间构象图。

1.3 统计学方法

采用GraphPad Prism 8.0软件进行各项数据分析。定量资料以x±s的形式表示,2组间比较采用独立样本t检验,多组间比较采用单因素方差分析。P<0.05表示差异具有统计学意义。

2 结果

2.1 PRPS1 位点突变对293T细胞巯嘌呤类药物敏感性的影响

采用Western blotting检测PRPS1各突变体在293T细胞中的蛋白表达情况,结果(图1A)显示,与转染pGV303空载体相比,转染pGV303 PRPS1 WT、A190T、I72V、I72F、R177S、V316L、V208A、V289A重组质粒的293T细胞均可高表达各外源性PRPS1,且各细胞间的表达量相似;继而表明,各外源性PRPS1在293T细胞中均有良好且相一致的蛋白表达。

图1

图1   PRPS1 位点突变对293T细胞巯嘌呤类药物敏感性的影响

Note: A. Protein expression of PRPS1 mutants in 293T cells by Western blotting. His-PRPS1 represents the PRPS1 fusion protein with His label, that is, the exogenous PRPS1 protein. B. Detection of the drug sensitivities of PRPS1 mutations to 6-MP in 293T cells by drug sensitivity experiment. P=0.000, P=1.000, P=0.632, compared with 293T cells transfected with pGV303 PRPS1 WT plasmid. C. Detection of the drug sensitivities of PRPS1 mutations to 6-TG in 293T cells by drug sensitivity experiment. P=0.000, P=0.135, P=0.291, compared with 293T cells transfected with pGV303 PRPS1 WT plasmid.

Fig 1   Effect of mutations at PRPS1 locus on the sensitivity of thiopurine chemotherapy drugs in 293T cells


药物敏感性实验的结果(图1B、C)显示,转染pGV303 PRPS1 I72F、R177S、V316L和V208A重组质粒的293T细胞对6-MP或6-TG的IC50远高于各药物的阴性对照(即转染Vector、pGV303 PRPS1 WT、I72V重组质粒的293T细胞)(均P=0.000),而转染pGV303 PRPS1 V289A重组质粒的293T细胞对6-MP或6-TG的IC50与各药物的阴性对照之间的差异均无统计学意义。

2.2 PRPS1I72位点突变对293T细胞巯嘌呤类药物敏感性的影响

采用Western blotting检测外源性PRPS1 I72位点不同突变体在293T细胞中的蛋白表达情况,结果(图2A)显示,与转染pGV303空载体相比,转染pGV303 PRPS1 WT、A190T、I72M、I72V、I72F、I72L、I72N、I72S、I72T重组质粒的293T细胞均高表达PRPS1不同突变体,且各细胞间的表达量相似;继而证明,外源性PRPS1 I72位点不同突变体在293T细胞中均有良好且相一致的蛋白表达。

图2

图2   PRPS1 I72位点突变对293T细胞巯嘌呤类药物敏感性的影响

Note: A. Protein expression of PRPS1 mutants in 293T cells by Western blotting. His-PRPS1 represents the PRPS1 fusion protein with His label, that is, the exogenous PRPS1 protein. B. Detection of the drug sensitivities of PRPS1 I72 mutations to 6-MP in 293T cells by drug sensitivity experiment. P=0.000, P=1.000, compared with 293T cells transfected with pGV303 PRPS1 WT plasmid. C. Detection of the drug sensitivities of PRPS1 I72 mutations to 6-TG in 293T cells by drug sensitivity experiment. P=0.000, P=0.995, compared with 293T cells transfected with pGV303 PRPS1 WT plasmid.

Fig 2   Effect of mutations at PRPS1 I72 locus on the sensitivity of thiopurine chemotherapy drugs in 293T cells


药物敏感性实验的结果(图2B、C)显示,6-MP或6-TG对转染pGV303 PRPS1 A190T、I72M、I72F、I72L、I72N、I72S、I72T重组质粒的293T细胞的IC50远高于各药物的阴性对照(即转染Vector、pGV303 PRPS1 WT、I72V重组质粒的293T细胞)(均P=0.000)。

2.3 PRPS1I72位点突变对REH细胞巯嘌呤类药物敏感性的影响

采用Western blotting检测各REH稳定细胞系中PRPS1不同突变体的蛋白表达情况,结果(图3A)显示,与转染pGV303空载体相比,稳定转染pGV303 PRPS1 WT、A190T、I72F、I72V重组质粒的REH细胞均高表达PRPS1,且各细胞间的表达量相似;继而证明,REH稳定细胞系构建成功。

图3

图3   PRPS1 I72位点突变对REH细胞巯嘌呤类药物敏感性的影响

Note:A. Protein expression of PRPS1 mutants in REH cells by Western blotting. His-PRPS1 represents the PRPS1 fusion protein with His label, that is, the exogenous PRPS1 protein. B. Detection of the drug sensitivities of PRPS1 I72 mutations to 6-MP in REH cells by drug sensitivity experiment. P=0.000, P=0.998, compared with REH cells transfected with pGV303 PRPS1 WT plasmid. C. Detection of the drug sensitivities of PRPS1 I72 mutations to 6-TG in REH cells by drug sensitivity experiment. P=0.000, P=0.903, compared with REH cells transfected with pGV303 PRPS1 WT plasmid.

Fig 3   Effect of mutations at PRPS1 I72 locus on the sensitivity of thiopurine chemotherapy drugs in REH cells


药物敏感性实验的结果(图3B、C)显示,6-MP或6-TG对稳定转染pGV303 PRPS1 A190T、I72F重组质粒的REH细胞的IC50远高于各药物的阴性对照(即稳定转染Vector、pGV303 PRPS1 WT、I72V重组质粒的REH细胞)(均P=0.000)。

而后,我们采用10 μg/mL 6-MP处理实验组细胞,48 h后经Annexin Ⅴ/DAPI双染并通过流式细胞术检测细胞的凋亡情况,结果(图4A、B)显示,稳定转染pGV303 PRPS1 A190T、I72F重组质粒的REH细胞的凋亡率明显低于阴性对照(稳定转染Vector、pGV303 PRPS1 WT、I72V重组质粒的REH细胞)(均P=0.000)。

图4

图4   PRPS1 I72位点突变对经6-MP诱导的REH细胞的DNA损伤和细胞凋亡的影响

Note: A/B. Flow scatter plots (A) and statistical analysis (B) of the detection of apoptosis rates for each REH cell line by Annexin Ⅴ/DAPI double staining. P=0.000, compared with REH cells transfected with pGV303 PRPS1 WT plasmid; P=0.000, compared with REH cells transfected with pGV303 PRPS1 I72V plasmid. C. Detection of the protein expression of DNA damage biomarkers and apoptosis-related proteins by Western blotting.

Fig 4   Effect of mutations at PRPS1 I72 locus on the apoptosis and DNA damage in REH cells induced by 6-MP


采用Western blotting检测实验组细胞中DNA损伤、细胞凋亡相关蛋白的表达情况,结果(图4C)显示与转染Vector、pGV303 PRPS1 WT、I72V重组质粒的REH细胞相比,经6-MP处理的稳定转染pGV303 PRPS1 A190T、I72F重组质粒的REH细胞中的γ-H2AX、pCHK2、cleaved PARP的表达水平有明显下调。继而提示,PRPS1 I72F突变可以更加有效地减少由6-MP诱导的细胞凋亡和DNA损伤反应。

2.4 PRPS1I72位点突变对蛋白质结构的影响

通过对蛋白质结构进行分析,我们发现PRPS1第72位氨基酸Ⅰ位于PRPS1内部的α-螺旋上(图5A)。当Ⅰ突变成V时,该突变对结构(即氨基酸的性质和侧链大小)均无明显影响(图5B);当I突变成F后,由于F的侧链是一个较大的苯环,其与邻近的β-折叠上的第42位氨基酸V距离较近,可能会产生一定的空间位阻,从而使得β-折叠的相对位置发生改变,进而导致PRPS1结构发生一定的形变(图5C)。

图5

图5   PRPS1 I72位点(A)、PRPS1 I72VB)和PRPS1 I72FC)的蛋白质结构示意图

Fig 5   Schematic diagrams of protein structures of PRPS1 I72 locus (A), PRPS1 I72V (B) and PRPS1 I72F(C)


3 讨论

有研究显示,联合化疗是临床上治疗儿童ALL的主要方式15-16,而巯嘌呤类化疗药物(6-MP、6-TG)是其联合化疗的主要药物之一17-20。目前,耐药、复发是儿童ALL治疗失败的主要原因。随着二代测序技术的广泛运用,ALL的分子分型及与 ALL 耐药、复发相关的基因突变图谱得到了进一步的补充21,从而为寻找该类基因变异奠定了重要基础。

PRPS1作为核苷酸合成途径中的限速酶,在ALL耐药、复发中发挥着重要作用。本研究首先在293T细胞中过表达ALL临床样本及2个ALL细胞系中已发现的多个未知功能的PRPS1突变体,并行巯嘌呤类药物敏感性检测,结果发现表达PRPS1 I72F、R177S、V316L、V208A的突变可使293T细胞对6-MP或6-TG产生耐药,而突变体I72V则不会影响细胞的药物敏感性。因此我们推测,PRPS1 I72位点突变成不同氨基酸后,其对巯嘌呤类药物敏感性的影响可能不尽相同。为此,我们构建了PRPS1 I72的不同突变体(包括I72M、I72L、I72N、I72S、I72T),在293T细胞中就I72不同突变体对巯嘌呤类药物敏感性的影响进行检测,结果发现表达PRPS1 I72M、I72F、I72L、I72N、I72S、I72T的突变可使293T细胞对6-MP或6-TG产生耐药。后续,通过构建REH稳定表达PRPS1各突变体的细胞系行巯嘌呤类药物敏感性检测,并通过Annexin Ⅴ/DAPI双染实验及细胞凋亡、DNA损伤蛋白检测明确了PRPS1 I72位点的不同突变对该类药物敏感性的影响亦不同,与293T细胞获得的结果一致。同时,我们尝试从蛋白质结构变化的角度就I72位点不同突变对巯嘌呤敏感性影响不同的现象做出解释。

本研究通过在293T细胞中瞬时表达和REH细胞稳定表达PRPS1各突变体进行巯嘌呤类药物敏感性检测,发现PRPS1 I72F、R177S、V316L、V208A 属于耐药突变,而I72V、V289A对巯嘌呤类药物敏感性无明显影响,继而证明PRPS1 I72位点不同突变对功能影响存在差别。从PRPS1 I72位点的三维蛋白质结构解析图上来看,PRPS1 I72位点的I突变成F可能对PRPS1蛋白结构有潜在影响,而突变成M时并没有明确影响(该结果在正文中未显示)。且PRPS1 I72位点既不在PRPS1底物结合的口袋和变构位点附近,也不在二聚体界面上;而在理论上,涉及酶活性位点、变构调节位点的突变才能够改变酶的活性。另外,本文所使用的通过PDB数据库预测产生的蛋白质三维结构模型可能与真正结构存在一定出入,因此要想进一步明确PRPS1 I72位点突变产生的耐药机制,尚需要突变体的蛋白结构才能确定。

综上,本研究表明PRPS1的不同位点突变可使细胞对巯嘌呤类化疗药物敏感性产生不同的影响,当我们在临床上发现ALL患儿存在PRPS1 I72F、R177S、V316L、V208A、I72M、I72L、I72N、I72S和I72T突变时,应警惕患儿出现的针对巯嘌呤类化疗药物的耐药性。在此类患儿的治疗中,我们应减少巯嘌呤类化疗药物的使用,而采用其他化疗药物进行个体化治疗,进一步探索针对此类患儿的最佳治疗方案。同时,我们的研究还证实了293T细胞可作为检测PRPS1突变对巯嘌呤类化疗药耐药的快速研究模型,继而提示可通过293T细胞对PRPS1突变是否会引起巯嘌呤类药物耐受进行快速评估,从而为后续临床用药提供指导。

作者贡献声明

李慧和沈树红参与了实验设计,崔芷嫣开展了实验操作,崔芷嫣和陈尧参与了数据分析和整理,李慧、崔芷嫣、陈尧、陶悦参与了论文的写作和修改。所有作者均阅读并同意了最终稿件的提交。

AUTHOR's CONTRIBUTIONS

The study was designed by LI Hui and SHEN Shuhong. The experiments were carried out by CUI Zhiyan. The data was collected and analyzed by CUI Zhiyan and CHEN Yao. The manuscript was drafted and revised by LI Hui, CUI Zhiyan, CHEN Yao and TAO Yue. All the authors have read the last version of paper and consented for submission.

利益冲突声明

所有作者声明不存在利益冲突。

COMPETING INTERESTS

All authors disclose no relevant conflict of interests.

参考文献

SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.

[本文引用: 1]

BROWN P, INABA H, ANNESLEY C, et al. Pediatric acute lymphoblastic leukemia, version 2.2020, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2020, 18(1): 81-112.

[本文引用: 1]

PUI C H, YANG J J, HUNGER S P, et al. Childhood acute lymphoblastic leukemia: progress through collaboration[J]. J Clin Oncol, 2015, 33(27): 2938-2948.

[本文引用: 1]

HUNGER S P, RAETZ E A. How I treat relapsed acute lymphoblastic leukemia in the pediatric population[J]. Blood, 2020, 136(16): 1803-1812.

[本文引用: 1]

MITTAL R, PATEL K, MITTAL J, et al. Association of PRPS1 mutations with disease phenotypes[J]. Dis Markers, 2015, 2015: 127013.

[本文引用: 1]

TAIRA M, IIZASA T, YAMADA K, et al. Tissue-differential expression of two distinct genes for phosphoribosyl pyrophosphate synthetase and existence of the testis-specific transcript[J]. Biochim Biophys Acta, 1989, 1007(2): 203-208.

[本文引用: 1]

LI S, LU Y C, PENG B Z, et al. Crystal structure of human phosphoribosyl pyrophosphate synthetase 1 reveals a novel allosteric site[J]. Biochem J, 2007, 401(1): 39-47.

[本文引用: 1]

AL-MAAWALI A, DUPUIS L, BLASER S, et al. Prenatal growth restriction, retinal dystrophy, diabetes insipidus and white matter disease: expanding the spectrum of PRPS1-related disorders[J]. Eur J Hum Genet, 2015, 23(3): 310-316.

[本文引用: 1]

DE BROUWER A P, VAN BOKHOVEN H, NABUURS S B, et al. PRPS1 mutations: four distinct syndromes and potential treatment[J]. Am J Hum Genet, 2010, 86(4): 506-518.

[本文引用: 1]

DE BROUWER A P, WILLIAMS K L, DULEY J A, et al. Arts syndrome is caused by loss-of-function mutations in PRPS1[J]. Am J Hum Genet, 2007, 81(3): 507-518.

KIM H J, SOHN K M, SHY M E, et al. Mutations in PRPS1, which encodes the phosphoribosyl pyrophosphate synthetase enzyme critical for nucleotide biosynthesis, cause hereditary peripheral neuropathy with hearing loss and optic neuropathy (CMTX5)[J]. Am J Hum Genet, 2007, 81(3): 552-558.

[本文引用: 1]

LI B S, LI H, BAI Y, et al. Negative feedback-defective PRPS1 mutants drive thiopurine resistance in relapsed childhood ALL[J]. Nat Med, 2015, 21(6): 563-571.

[本文引用: 2]

PINKEL D, HERNANDEZ K, BORELLA L, et al. Drug dosage and remission duration in childhood lymphocytic leukemia[J]. Cancer, 1971, 27(2): 247-256.

[本文引用: 1]

SOMAZU S, TANAKA Y, TAMAI M, et al. NUDT15 polymorphism and NT5C2 and PRPS1 mutations influence thiopurine sensitivity in acute lymphoblastic leukaemia cells[J]. J Cell Mol Med, 2021, 25(22): 10521-10533.

[本文引用: 1]

PUI C H. Recent research advances in childhood acute lymphoblastic leukemia[J]. J Formos Med Assoc, 2010, 109(11): 777-787.

[本文引用: 1]

BASSAN R, HOELZER D. Modern therapy of acute lymphoblastic leukemia[J]. J Clin Oncol, 2011, 29(5): 532-543.

[本文引用: 1]

RELLING M V, HANCOCK M L, BOYETT J M, et al. Prognostic importance of 6-mercaptopurine dose intensity in acute lymphoblastic leukemia[J]. Blood, 1999, 93(9): 2817-2823.

[本文引用: 1]

KARRAN P, ATTARD N. Thiopurines in current medical practice: molecular mechanisms and contributions to therapy-related cancer[J]. Nat Rev Cancer, 2008, 8(1): 24-36.

BHATIA S, LANDIER W, SHANGGUAN M, et al. Nonadherence to oral mercaptopurine and risk of relapse in Hispanic and non-Hispanic white children with acute lymphoblastic leukemia: a report from the children's oncology group[J]. J Clin Oncol, 2012, 30(17): 2094-2101.

INABA H, MULLIGHAN C G. Pediatric acute lymphoblastic leukemia[J]. Haematologica, 2020, 105(11): 2524-2539.

[本文引用: 1]

LI B S, BRADY S W, MA X T, et al. Therapy-induced mutations drive the genomic landscape of relapsed acute lymphoblastic leukemia[J]. Blood, 2020, 135(1): 41-55.

[本文引用: 1]

/