上海交通大学学报(医学版) ›› 2022, Vol. 42 ›› Issue (2): 197-204.doi: 10.3969/j.issn.1674-8115.2022.02.010
• 论著 · 循证医学 • 上一篇
收稿日期:
2021-09-22
出版日期:
2022-02-28
发布日期:
2022-03-17
通讯作者:
王莉娜
E-mail:220193606@seu.edu.cn;lnwang@seu.edu.cn
作者简介:
谭颖超(1995—),女,硕士生;电子信箱:220193606@seu.edu.cn。
基金资助:
Yingchao TAN(), Junyue YANG, Lina WANG(
)
Received:
2021-09-22
Online:
2022-02-28
Published:
2022-03-17
Contact:
Lina WANG
E-mail:220193606@seu.edu.cn;lnwang@seu.edu.cn
Supported by:
摘要:
目的·评估白细胞介素-1B(interleukin-1B,IL-1B)-511C/T基因多态性与冠状动脉粥样硬化性心脏病(冠心病)发生风险的关联。方法·检索PubMed、Web of Science、Scopus和Embase数据库中已公开发表的关于IL-1B-511C/T基因多态性与冠心病的病例对照研究。检索时间为各数据库建库至2021年6月。由2名研究人员独立进行文献筛选及数据提取。提取的数据包括第一作者姓名、发表年份、研究对象的种族、匹配因素、对照组来源、基因分型方法、样本量、基因型计数、等位基因计数、是否满足哈迪-温伯格平衡定律。采用Stata 16.0软件进行meta分析。结果·共纳入9篇文献,包括2 190例冠心病患者和2 385例对照者。Meta分析结果显示,IL-1B-511C/T基因多态性与冠心病发生风险间无明显统计学相关(T vs C:OR =1.21,95% CI 0.91~1.61;TT+CT vs CC:OR=1.24,95% CI 0.88~1.75;CC+CT vs TT:OR=1.28,95% CI 0.86~1.90)。亚组分析结果显示,在中国人群中与携带C等位基因和CC基因型的个体相比,携带T等位基因和TT+CT基因型的个体发生冠心病的风险分别增加了85%和116%(T vs C:OR=1.85,95% CI 1.02~3.36;TT+CT vs CC:OR=2.16,95% CI 1.10~4.24)。在以医院为基础的病例对照研究中,与携带CC+CT基因型的人群相比,携带TT基因型的人群发生冠心病的风险增加了59%(OR=1.59,95% CI 1.03~2.47)。结论·IL-1B-511C/T基因多态性与冠心病发生风险间无明显关联。在中国人群中,携带T等位基因和TT+TC基因型的个体的冠心病发生风险较高。
中图分类号:
谭颖超, 杨珺玥, 王莉娜. 白细胞介素-1B-511C/T基因多态性与冠状动脉粥样硬化性心脏病关联的meta分析[J]. 上海交通大学学报(医学版), 2022, 42(2): 197-204.
Yingchao TAN, Junyue YANG, Lina WANG. Association between interleukin-1B-511C/T gene polymorphism and coronary atherosclerotic heart disease: a meta-analysis[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2022, 42(2): 197-204.
Study included | Year | Area | Race | Source of control group | Genotype method | Matching(Y/N) | HWE(Y/N) | NOS score |
---|---|---|---|---|---|---|---|---|
LICASTRO, et al[ | 2004 | Italy | Caucasian | PB | PCR-RFLP | Y | Y | ≥7 |
IACOVIELLO, et al[ | 2005 | Italy | Caucasian | PB | Not PCR-RFLP | Y | Y | ≥7 |
ZEE, et al[ | 2008 | US | Caucasian | PB | Not PCR-RFLP | Y | Y | ≥7 |
RIOS, et al[ | 2010 | Brazil | Caucasian | HB | PCR-RFLP | N | Y | ≥7 |
COKER, et al[ | 2011 | Turkish | Caucasian | HB | PCR-RFLP | N | Y | ≥7 |
REN, et al[ | 2015 | China | Chinese | HB | Not PCR-RFLP | N | Y | ≥7 |
TABREZ, et al[ | 2017 | Saudi | Caucasian | HB | PCR-RFLP | N | Y | <7 |
CHEN, et al[ | 2018 | China | Chinese | HB | Not PCR-RFLP | N | N | ≥7 |
MA, et al[ | 2020 | China | Chinese | HB | PCR-RFLP | Y | Y | ≥7 |
表 1 纳入文献的基本特征
Tab 1 Basic characteristics of the included studies
Study included | Year | Area | Race | Source of control group | Genotype method | Matching(Y/N) | HWE(Y/N) | NOS score |
---|---|---|---|---|---|---|---|---|
LICASTRO, et al[ | 2004 | Italy | Caucasian | PB | PCR-RFLP | Y | Y | ≥7 |
IACOVIELLO, et al[ | 2005 | Italy | Caucasian | PB | Not PCR-RFLP | Y | Y | ≥7 |
ZEE, et al[ | 2008 | US | Caucasian | PB | Not PCR-RFLP | Y | Y | ≥7 |
RIOS, et al[ | 2010 | Brazil | Caucasian | HB | PCR-RFLP | N | Y | ≥7 |
COKER, et al[ | 2011 | Turkish | Caucasian | HB | PCR-RFLP | N | Y | ≥7 |
REN, et al[ | 2015 | China | Chinese | HB | Not PCR-RFLP | N | Y | ≥7 |
TABREZ, et al[ | 2017 | Saudi | Caucasian | HB | PCR-RFLP | N | Y | <7 |
CHEN, et al[ | 2018 | China | Chinese | HB | Not PCR-RFLP | N | N | ≥7 |
MA, et al[ | 2020 | China | Chinese | HB | PCR-RFLP | Y | Y | ≥7 |
Study included | Sample size/n | Genotype and allele frequency in case group/n | Genotype and allele frequency in control group/n | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Case group | Control group | CC | CT | TT | C | T | CC | CT | TT | C | T | |||
LICASTRO, et al[ | 139 | 122 | 65 | 60 | 14 | 190 | 88 | 46 | 65 | 11 | 157 | 87 | ||
IACOVIELLO, et al[ | 406 | 419 | 195 | 180 | 31 | 570 | 242 | 174 | 187 | 58 | 535 | 303 | ||
ZEE, et al[ | 340 | 341 | 148 | 153 | 39 | 449 | 231 | 164 | 137 | 40 | 465 | 217 | ||
RIOS, et al[ | 276 | 138 | 80 | 130 | 66 | 290 | 262 | 47 | 69 | 22 | 163 | 113 | ||
COKER, et al[ | 167 | 235 | 59 | 72 | 36 | 190 | 144 | 77 | 113 | 45 | 267 | 203 | ||
REN, et al[ | 325 | 342 | 95 | 152 | 78 | 342 | 308 | 114 | 155 | 73 | 383 | 301 | ||
TABREZ, et al[ | 152 | 75 | 58 | 63 | 31 | 179 | 125 | 27 | 33 | 15 | 87 | 63 | ||
CHEN, et al[ | 251 | 200 | 134 | 80 | 37 | 348 | 154 | 143 | 37 | 20 | 323 | 77 | ||
MA, et al[ | 134 | 513 | 35 | 65 | 34 | 135 | 133 | 298 | 179 | 36 | 775 | 251 |
表 2 IL-1B-511C/T位点的基因型和等位基因频率分布
Tab 2 Distribution of IL-1B-511T/C locus genotype and allele frequency
Study included | Sample size/n | Genotype and allele frequency in case group/n | Genotype and allele frequency in control group/n | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Case group | Control group | CC | CT | TT | C | T | CC | CT | TT | C | T | |||
LICASTRO, et al[ | 139 | 122 | 65 | 60 | 14 | 190 | 88 | 46 | 65 | 11 | 157 | 87 | ||
IACOVIELLO, et al[ | 406 | 419 | 195 | 180 | 31 | 570 | 242 | 174 | 187 | 58 | 535 | 303 | ||
ZEE, et al[ | 340 | 341 | 148 | 153 | 39 | 449 | 231 | 164 | 137 | 40 | 465 | 217 | ||
RIOS, et al[ | 276 | 138 | 80 | 130 | 66 | 290 | 262 | 47 | 69 | 22 | 163 | 113 | ||
COKER, et al[ | 167 | 235 | 59 | 72 | 36 | 190 | 144 | 77 | 113 | 45 | 267 | 203 | ||
REN, et al[ | 325 | 342 | 95 | 152 | 78 | 342 | 308 | 114 | 155 | 73 | 383 | 301 | ||
TABREZ, et al[ | 152 | 75 | 58 | 63 | 31 | 179 | 125 | 27 | 33 | 15 | 87 | 63 | ||
CHEN, et al[ | 251 | 200 | 134 | 80 | 37 | 348 | 154 | 143 | 37 | 20 | 323 | 77 | ||
MA, et al[ | 134 | 513 | 35 | 65 | 34 | 135 | 133 | 298 | 179 | 36 | 775 | 251 |
Subgroup | Genetic model | Number of study | OR (95% CI) | I2 value | PH value |
---|---|---|---|---|---|
Race | |||||
Chinese | T vs C | 3 | 1.85 (1.02-3.36) | 93.3% | 0.000 |
TT+CT vs CC | 3 | 2.16 (1.10-4.24) | 89.4% | 0.000 | |
CC+CT vs TT | 3 | 1.99 (0.87-4.58) | 88.9% | 0.000 | |
Caucasian | T vs C | 6 | 0.97 (0.82-1.16) | 57.6% | 0.038 |
TT+CT vs CC | 6 | 0.94 (0.80-1.09) | 37.2% | 0.158 | |
CC+CT vs TT | 6 | 1.00 (0.70-1.42) | 57.8% | 0.037 | |
Source of control | |||||
PB | T vs C | 3 | 0.89 (0.68-1.15) | 67.8% | 0.045 |
TT+CT vs CC | 3 | 0.88 (0.63-1.24) | 66.2% | 0.052 | |
CC+CT vs TT | 3 | 0.78 (0.48-1.29) | 57.7% | 0.094 | |
HB | T vs C | 6 | 1.42 (1.00-2.03) | 89.0% | 0.000 |
TT+CT vs CC | 6 | 1.50 (0.96-2.34) | 85.5% | 0.000 | |
CC+CT vs TT | 6 | 1.59 (1.03-2.47) | 76.9% | 0.000 | |
Genotype method | |||||
PCR-RFLP | T vs C | 5 | 1.27 (0.78-2.06) | 91.4% | 0.000 |
TT+CT vs CC | 5 | 1.24 (0.66-2.33) | 89.2% | 0.000 | |
CC+CT vs TT | 5 | 1.63 (0.91-2.90) | 79.0% | 0.000 | |
Not PCR-RFLP | T vs C | 4 | 1.14 (0.82-1.58) | 87.4% | 0.000 |
TT+CT vs CC | 4 | 1.23 (0.82-1.84) | 83.9% | 0.000 | |
CC+CT vs TT | 4 | 0.97 (0.62-1.49) | 72.3% | 0.000 | |
Matching (Y/N) | |||||
Y | T vs C | 4 | 1.20 (0.66-2.21) | 95.5% | 0.000 |
TT+CT vs CC | 4 | 1.25 (0.63-2.50) | 93.3% | 0.000 | |
CC+CT vs TT | 4 | 1.26 (0.47-3.36) | 92.4% | 0.000 | |
N | T vs C | 5 | 1.22 (0.99-1.51) | 62.8% | 0.030 |
TT+CT vs CC | 5 | 1.24 (0.91-1.71) | 65.0% | 0.022 | |
CC+CT vs TT | 5 | 1.28 (1.03-1.59) | 0 | 0.707 | |
NOS score | |||||
≥7 | T vs C | 8 | 1.24 (0.91-1.69) | 90.9% | 0.000 |
TT+CT vs CC | 8 | 1.28 (0.89-1.86) | 87.5% | 0.000 | |
CC+CT vs TT | 8 | 1.31 (0.85-2.02) | 83.0% | 0.000 | |
<7 | T vs C | 1 | 0.96 (0.65-1.43) | ‒ | ‒ |
TT+CT vs CC | 1 | 0.91 (0.51-1.62) | ‒ | ‒ | |
CC+CT vs TT | 1 | 1.02 (0.51-2.04) | ‒ | ‒ | |
HWE (Y/N) | |||||
Y | T vs C | 8 | 1.15 (0.85-1.55) | 89.8% | 0.000 |
TT+CT vs CC | 8 | 1.16 (0.81-1.64) | 85.1% | 0.000 | |
CC+CT vs TT | 8 | 1.25 (0.80-1.93) | 82.8% | 0.000 | |
N | T vs C | 1 | 1.86 (1.36-2.54) | ‒ | ‒ |
TT+CT vs CC | 1 | 2.19 (1.48-3.25) | ‒ | ‒ | |
CC+CT vs TT | 1 | 1.56 (0.87-2.78) | ‒ | ‒ |
表3 IL-1B-511C/T基因多态性与冠心病关联的亚组分析
Tab 3 Subgroup analysis of the association between IL-1B-511C/T gene polymorphism and CHD
Subgroup | Genetic model | Number of study | OR (95% CI) | I2 value | PH value |
---|---|---|---|---|---|
Race | |||||
Chinese | T vs C | 3 | 1.85 (1.02-3.36) | 93.3% | 0.000 |
TT+CT vs CC | 3 | 2.16 (1.10-4.24) | 89.4% | 0.000 | |
CC+CT vs TT | 3 | 1.99 (0.87-4.58) | 88.9% | 0.000 | |
Caucasian | T vs C | 6 | 0.97 (0.82-1.16) | 57.6% | 0.038 |
TT+CT vs CC | 6 | 0.94 (0.80-1.09) | 37.2% | 0.158 | |
CC+CT vs TT | 6 | 1.00 (0.70-1.42) | 57.8% | 0.037 | |
Source of control | |||||
PB | T vs C | 3 | 0.89 (0.68-1.15) | 67.8% | 0.045 |
TT+CT vs CC | 3 | 0.88 (0.63-1.24) | 66.2% | 0.052 | |
CC+CT vs TT | 3 | 0.78 (0.48-1.29) | 57.7% | 0.094 | |
HB | T vs C | 6 | 1.42 (1.00-2.03) | 89.0% | 0.000 |
TT+CT vs CC | 6 | 1.50 (0.96-2.34) | 85.5% | 0.000 | |
CC+CT vs TT | 6 | 1.59 (1.03-2.47) | 76.9% | 0.000 | |
Genotype method | |||||
PCR-RFLP | T vs C | 5 | 1.27 (0.78-2.06) | 91.4% | 0.000 |
TT+CT vs CC | 5 | 1.24 (0.66-2.33) | 89.2% | 0.000 | |
CC+CT vs TT | 5 | 1.63 (0.91-2.90) | 79.0% | 0.000 | |
Not PCR-RFLP | T vs C | 4 | 1.14 (0.82-1.58) | 87.4% | 0.000 |
TT+CT vs CC | 4 | 1.23 (0.82-1.84) | 83.9% | 0.000 | |
CC+CT vs TT | 4 | 0.97 (0.62-1.49) | 72.3% | 0.000 | |
Matching (Y/N) | |||||
Y | T vs C | 4 | 1.20 (0.66-2.21) | 95.5% | 0.000 |
TT+CT vs CC | 4 | 1.25 (0.63-2.50) | 93.3% | 0.000 | |
CC+CT vs TT | 4 | 1.26 (0.47-3.36) | 92.4% | 0.000 | |
N | T vs C | 5 | 1.22 (0.99-1.51) | 62.8% | 0.030 |
TT+CT vs CC | 5 | 1.24 (0.91-1.71) | 65.0% | 0.022 | |
CC+CT vs TT | 5 | 1.28 (1.03-1.59) | 0 | 0.707 | |
NOS score | |||||
≥7 | T vs C | 8 | 1.24 (0.91-1.69) | 90.9% | 0.000 |
TT+CT vs CC | 8 | 1.28 (0.89-1.86) | 87.5% | 0.000 | |
CC+CT vs TT | 8 | 1.31 (0.85-2.02) | 83.0% | 0.000 | |
<7 | T vs C | 1 | 0.96 (0.65-1.43) | ‒ | ‒ |
TT+CT vs CC | 1 | 0.91 (0.51-1.62) | ‒ | ‒ | |
CC+CT vs TT | 1 | 1.02 (0.51-2.04) | ‒ | ‒ | |
HWE (Y/N) | |||||
Y | T vs C | 8 | 1.15 (0.85-1.55) | 89.8% | 0.000 |
TT+CT vs CC | 8 | 1.16 (0.81-1.64) | 85.1% | 0.000 | |
CC+CT vs TT | 8 | 1.25 (0.80-1.93) | 82.8% | 0.000 | |
N | T vs C | 1 | 1.86 (1.36-2.54) | ‒ | ‒ |
TT+CT vs CC | 1 | 2.19 (1.48-3.25) | ‒ | ‒ | |
CC+CT vs TT | 1 | 1.56 (0.87-2.78) | ‒ | ‒ |
1 | MATHERS C D, LONCAR D. Projections of global mortality and burden of disease from 2002 to 2030[J]. PLoS Med, 2006, 3(11): e442. |
2 | MALAKAR A K, CHOUDHURY D, HALDER B, et al. A review on coronary artery disease, its risk factors, and therapeutics[J]. J Cell Physiol, 2019, 234(10): 16812-16823. |
3 | CAMPBELL T C, PARPIA B, CHEN J. Diet, lifestyle, and the etiology of coronary artery disease: the Cornell China study[J]. Am J Cardiol, 1998, 82(10B): 18T-21T. |
4 | ERBEL R, GÖRGE G. New insights in pathogenesis and etiology of coronary artery disease[J]. Dtsch Med Wochenschr, 2014, 139(Suppl 1): S4-S8. |
5 | BEDNARSKA J, BEDNARSKA-CHABOWSKA D, ADAMIEC-MROCZEK J. Coronary artery disease: new insights into revascularization treatment of diabetic patients[J]. Adv Clin Exp Med, 2017, 26(7): 1163-1167. |
6 | STEIN R, FERRARI F, SCOLARI F.Genetics, dyslipidemia, and disease cardiovascular: new insights[J]. Curr Cardiol Rep, 2019, 21(8): 68. |
7 | MARTINEZ P F, OKOSHI M P. Genetic risk in coronary artery disease[J]. Arq Bras Cardiol, 2018, 111(1): 62-63. |
8 | MYERS R H, KIELY D K, CUPPLES L A, et al. Parental history is an independent risk factor for coronary artery disease: the Framingham Study[J]. Am Heart J, 1990, 120(4): 963-969. |
9 | BORGHINI A, ANDREASSI M G. Genetic polymorphisms offer insight into the causal role of microRNA in coronary artery disease[J]. Atherosclerosis, 2018, 269: 63-70. |
10 | MOREIRA D M, DA SILVA R L, VIEIRA J L, et al. Role of vascular inflammation in coronary artery disease: potential of anti-inflammatory drugs in the prevention of atherothrombosis. Inflammation and anti-inflammatory drugs in coronary artery disease[J]. Am J Cardiovasc Drugs, 2015, 15(1): 1-11. |
11 | DINARELLO C A. Biologic basis for interleukin-1 in disease[J]. Blood, 1996, 87(6): 2095-2147. |
12 | DHOREPATIL A, BALL S, GHOSH R K, et al. Canakinumab: promises and future in cardiometabolic diseases and malignancy[J]. Am J Med, 2019, 132(3): 312-324. |
13 | TABREZ S, JABIR N R, FIROZ C K, et al. Estimation of interleukin-1β promoter (-31 C/T and -511 T/C) polymorphisms and its level in coronary artery disease patients[J]. J Cell Biochem, 2017, 118(9): 2977-2982. |
14 | CHIBANA H, KAJIMOTO H, UENO T, et al. Interleukin-1β is associated with coronary endothelial dysfunction in patients with mTOR-inhibitor-eluting stent implantation[J]. Heart Vessels, 2017, 32(7): 823-832. |
15 | RIOS D L S, CERQUEIRA C C S, BONFIM-SILVA R, et al. Interleukin-1β and interleukin-6 gene polymorphism associations with angiographically assessed coronary artery disease in Brazilians[J]. Cytokine, 2010, 50(3): 292-296. |
16 | MANTEL N, HAENSZEL W. Statistical aspects of the analysis of data from retrospective studies of disease[J]. J Natl Cancer Inst, 1959, 22(4): 719-748. |
17 | LICASTRO F, CHIAPPELLI M, CALDARERA C M, et al. The concomitant presence of polymorphic alleles of interleukin-1β, interleukin-6 and apolipoprotein E is associated with an increased risk of myocardial infarction in elderly men. Results from a pilot study[J]. Mech Ageing Dev, 2004, 125(8): 575-579. |
18 | IACOVIELLO L, DI CASTELNUOVO A, GATTONE M, et al. Polymorphisms of the interleukin-1β gene affect the risk of myocardial infarction and ischemic stroke at young age and the response of mononuclear cells to stimulation in vitro[J]. Arterioscler Thromb Vasc Biol, 2005, 25(1): 222-227. |
19 | ZEE R Y L, HENNESSEY H, MICHAUD S E, et al. Genetic variants within the interleukin-1 gene cluster, and risk of incident myocardial infarction, and ischemic stroke: a nested case-control approach[J]. Atherosclerosis, 2008, 201(1): 124-129. |
20 | COKER A, ARMAN A, SOYLU O, et al. Lack of association between IL-1 and IL-6 gene polymorphisms and myocardial infarction in Turkish population[J]. Int J Immunogenet, 2011, 38(3): 201-208. |
21 | REN B J, SHE Q. Study on the association between IL-1β, IL-8 and IL-10 gene polymorphisms and risk of coronary artery disease[J]. Int J Clin Exp Med, 2015, 8(5): 7937-7943. |
22 | CHEN L, LU F, WANG Z, et al. Influence of interleukin-1β gene polymorphism on the risk of myocardial infarction complicated with ischemic stroke[J]. Exp Ther Med, 2018, 16(6): 5166-5170. |
23 | MA L J, SU H, WANG Y, et al. Interleukin-1β (IL-1β) C-511T polymorphism is associated with susceptibility to coronary artery disease in type 2 diabetic patients[J]. Eur J Inflamm, 2020, 18(5): 1-12. |
24 | MUSUNURU K, KATHIRESAN S. Genetics of common, complex coronary artery disease[J]. Cell, 2019, 177(1): 132-145. |
25 | TABAEI S, MOTALLEBNEZHAD M, TABAEE S S. Systematic review and meta-analysis of association of polymorphisms in inflammatory cytokine genes with coronary artery disease[J]. Inflamm Res, 2020, 69(10): 1001-1013. |
26 | VOHNOUT B, DI CASTELNUOVO A, TROTTA R, et al. Interleukin-1 gene cluster polymorphisms and risk of coronary artery disease[J]. Haematologica, 2003, 88(1): 54-60. |
27 | 赵娜, 王兴宁, 张瑞. 中国多省份人群IL-1B-511C/T和IL1RN+8006T/C单核苷酸多态性与冠心病相关性的meta分析[J]. 细胞与分子免疫学杂志, 2017, 33(10): 1409-1414. |
28 | 罗涛, 王璐, 田恬, 等. 匹配在观察性研究中的作用: 有向无环图视角[J]. 中华流行病学杂志, 2021, 42(4): 740-744. |
29 | 刘宝花. 病例对照研究在健康管理科研中的理论、设计和应用[J]. 中华健康管理学杂志, 2019, 13(4): 360-366. |
[1] | 程培培, 杜亚松. 白细胞介素-1受体辅助蛋白在神经精神疾病发病中作用的研究进展[J]. 上海交通大学学报(医学版), 2022, 42(1): 101-106. |
[2] | 钱德伟, 周任, 关礼春, 张航, 虞敏. 吸入一氧化氮气体对外科手术后肾功能损伤和出血影响的meta分析[J]. 上海交通大学学报(医学版), 2022, 42(1): 95-100. |
[3] | 王毅, 程诚, 沈红艳, 高红艳, 戴悦宁, 易正辉. 经颅磁刺激对阿尔茨海默病患者认知功能及伴痴呆的行为精神症状疗效的meta分析[J]. 上海交通大学学报(医学版), 2021, 41(7): 931-941. |
[4] | 赵倩, 高霖, 王长谦, 张俊峰, 张绘莉, 卓杨. 冠状动脉粥样硬化性心脏病患者外周血单核细胞亚群CX3CR1表达的变化及意义[J]. 上海交通大学学报(医学版), 2021, 41(3): 328-333. |
[5] | 刘洁, 谢新民, 支雪梅, 陆静毅. 睡眠时间与糖尿病性视网膜病变风险关系的meta分析[J]. 上海交通大学学报(医学版), 2021, 41(11): 1502-1508. |
[6] | 陈智灵, 罗晨, 赵康佳, 沈玲, 胡三莲. 2种镇痛方式在结直肠癌术后应用效果的meta分析[J]. 上海交通大学学报(医学版), 2021, 41(10): 1344-1350. |
[7] | 潘胜珂,李 惠,魏燕燕,姚培芬,李华芳. 安慰剂治疗原发性失眠症患者的meta分析[J]. 上海交通大学学报(医学版), 2020, 40(4): 505-. |
[8] | 潘德燊1, 2,李 登1,邵 怡1. 白细胞介素 -11对肿瘤促进作用的研究进展[J]. 上海交通大学学报(医学版), 2020, 40(4): 548-. |
[9] | 李 鑫*,梁馨月*,方宁远,汪海娅. 老年稳定性冠状动脉粥样硬化性心脏病患者合并衰弱综合征的影响因素分析[J]. 上海交通大学学报(医学版), 2020, 40(12): 1627-1631. |
[10] | 黄 燕1,张宪高2,林 亨1,程淑英1. 重复经颅磁刺激对精神分裂症疗效及安全性研究的meta分析[J]. 上海交通大学学报(医学版), 2020, 40(1): 81-. |
[11] | 范益博1, 2,幺天保1,马 珺1,袁安彩1,杜勇平1,邵 琴1,卜 军1. 血清维生素D与冠状动脉粥样硬化性心脏病患者冠状动脉病变严重程度及短期预后的相关性研究[J]. 上海交通大学学报(医学版), 2020, 40(07): 889-893. |
[12] | 徐 洪*,朱鹏雄*,周衍再,裘佳培,刘 俊#,赵 强#. 微创冠状动脉旁路移植术的远期疗效分析[J]. 上海交通大学学报(医学版), 2020, 40(05): 656-661. |
[13] | 方新宇 1,卢卫红 1,王慧珍 2,倪建良 3,张江涛 3,蔡军 1,李涛 4,张登峰 2,张晨 1. EGR1基因与中国汉族人群阿尔茨海默病发病风险的关联研究[J]. 上海交通大学学报(医学版), 2019, 39(2): 153-. |
[14] | 汪也微,陈 艳,方新宇,张 毅,蔡 军,宋立升,张 晨. 奥氮平血药浓度与细胞色素P450 1A2基因多态性关系的meta分析[J]. 上海交通大学学报(医学版), 2019, 39(10): 1167-. |
[15] | 王青,姜达君,贾伟涛. Pauwels三型股骨颈骨折不同内固定方式的 meta分析[J]. 上海交通大学学报(医学版), 2018, 38(9): 1045-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||