1 |
GOEL A, BOLAND C R. Epigenetics of colorectal cancer[J]. Gastroenterology, 2012, 143(6): 1442-1460.e1.
|
2 |
CAVALLI G, HEARD E. Advances in epigenetics link genetics to the environment and disease[J]. Nature, 2019, 571(7766): 489-499.
|
3 |
ZHANG Z, WANG Q, ZHANG M M, et al. Comprehensive analysis of the transcriptome-wide m6A methylome in colorectal cancer by MeRIP sequencing[J]. Epigenetics, 2021, 16(4): 425-435.
|
4 |
ANASTASIADOU E, JACOB L S, SLACK F J. Non-coding RNA networks in cancer[J]. Nat Rev Cancer, 2018, 18(1): 5-18.
|
5 |
HAO S H, CONG L, QU R F, et al. Emerging roles of circular RNAs in colorectal cancer[J]. Onco Targets Ther, 2019, 12: 4765-4777.
|
6 |
GUO Y X, GUO Y Y, CHEN C, et al. Circ3823 contributes to growth, metastasis and angiogenesis of colorectal cancer: involvement of miR-30c-5p/TCF7 axis[J]. Mol Cancer, 2021, 20(1): 93.
|
7 |
LIU X, LIU Y Z, LIU Z, et al. CircMYH9 drives colorectal cancer growth by regulating serine metabolism and redox homeostasis in a p53-dependent manner[J]. Mol Cancer, 2021, 20(1): 114.
|
8 |
CHEN L Y, WANG L, REN Y X, et al. The circular RNA circ-ERBIN promotes growth and metastasis of colorectal cancer by miR-125a-5p and miR-138-5p/4EBP-1 mediated cap-independent HIF-1α translation[J]. Mol Cancer, 2020, 19(1): 164.
|
9 |
JIANG T, WANG H Y, LIU L Y, et al. CircIL4R activates the PI3K/AKT signaling pathway via the miR-761/TRIM29/PHLPP1 axis and promotes proliferation and metastasis in colorectal cancer[J]. Mol Cancer, 2021, 20(1): 167.
|
10 |
WANG J Q, ZHANG Y, SONG H, et al. The circular RNA circSPARC enhances the migration and proliferation of colorectal cancer by regulating the JAK/STAT pathway[J]. Mol Cancer, 2021, 20(1): 81.
|
11 |
ESTELLER M, PANDOLFI P P. The epitranscriptome of noncoding RNAs in cancer[J]. Cancer Discov, 2017, 7(4): 359-368.
|
12 |
CHEN C, GUO Y Y, GUO Y X, et al. m6A modification in non-coding RNA: the role in cancer drug resistance[J]. Front Oncol, 2021, 11: 746789.
|
13 |
FU Y, DOMINISSINI D, RECHAVI G, et al. Gene expression regulation mediated through reversible m⁶A RNA methylation[J]. Nat Rev Genet, 2014, 15(5): 293-306.
|
14 |
ZACCARA S, RIES R J, JAFFREY S R. Reading, writing and erasing mRNA methylation[J]. Nat Rev Mol Cell Biol, 2019, 20(10): 608-624.
|
15 |
LI T, HU P S, ZUO Z X, et al. METTL3 facilitates tumor progression via an m6A-IGF2BP2-dependent mechanism in colorectal carcinoma[J]. Mol Cancer, 2019, 18(1): 112.
|
16 |
NOMBELA P, MIGUEL-LÓPEZ B, BLANCO S. The role of m6A, m5C and Ψ RNA modifications in cancer: novel therapeutic opportunities[J]. Mol Cancer, 2021, 20(1): 18.
|
17 |
ZHOU C, MOLINIE B, DANESHVAR K, et al. Genome-wide maps of m6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs[J]. Cell Rep, 2017, 20(9): 2262-2276.
|
18 |
YANG Y, FAN X J, MAO M W, et al. Extensive translation of circular RNAs driven by N6-methyladenosine[J]. Cell Res, 2017, 27(5): 626-641.
|
19 |
MENG E Q, DENG J, JIANG R Q, et al. CircRNA-encoded peptides or proteins as new players in digestive system neoplasms[J]. Front Oncol, 2022, 12: 944159.
|
20 |
LI Y, CHEN B, ZHAO J J, et al. HNRNPL circularizes ARHGAP35 to produce an oncogenic protein[J]. Adv Sci (Weinh), 2021, 8(13): 2001701.
|
21 |
KONSAVAGE W M Jr, KYLER S L, RENNOLL S A, et al. Wnt/β- catenin signaling regulates Yes-associated protein (YAP) gene expression in colorectal carcinoma cells[J]. J Biol Chem, 2012, 287(15): 11730-11739.
|
22 |
CHEN C, YUAN W T, ZHOU Q B, et al. N6-methyladenosine-induced circ1662 promotes metastasis of colorectal cancer by accelerating YAP1 nuclear localization[J]. Theranostics, 2021, 11(9): 4298-4315.
|
23 |
WANG Q, CHEN C, DING Q Q, et al. METTL3-mediated m6A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance[J]. Gut, 2020, 69(7): 1193-1205.
|
24 |
VO J N, CIESLIK M, ZHANG Y J, et al. The landscape of circular RNA in cancer[J]. Cell, 2019, 176(4): 869-881.e13.
|
25 |
SHIMA H, MATSUMOTO M, ISHIGAMI Y, et al. S-adeno-sylmethionine synthesis is regulated by selective N6-adenosine methylation and mRNA degradation involving METTL16 and YTHDC1[J]. Cell Rep, 2017, 21(12): 3354-3363.
|
26 |
PARK O H, HA H, LEE Y, et al. Endoribonucleolytic cleavage of m6A-containing RNAs by RNase P/MRP complex[J]. Mol Cell, 2019, 74(3): 494-507.e8.
|
27 |
KRISTENSEN L S, JAKOBSEN T, HAGER H, et al. The emerging roles of circRNAs in cancer and oncology[J]. Nat Rev Clin Oncol, 2022, 19(3): 188-206.
|
28 |
LIN C W, MA M, ZHANG Y, et al. The N6-methyladenosine modification of circALG1 promotes the metastasis of colorectal cancer mediated by the miR-342-5p/PGF signalling pathway[J]. Mol Cancer, 2022, 21(1): 80.
|
29 |
CHEN R X, CHEN X, XIA L P, et al. N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis[J]. Nat Commun, 2019, 10(1): 4695.
|
30 |
BAI Y, YANG C X, WU R L, et al. YTHDF1 regulates tumorigenicity and cancer stem cell-like activity in human colorectal carcinoma[J]. Front Oncol, 2019, 9: 332.
|
31 |
JIANG Z P, HOU Z H, LIU W, et al. Circular RNA protein tyrosine kinase 2 (circPTK2) promotes colorectal cancer proliferation, migration, invasion and chemoresistance[J]. Bioengineered, 2022, 13(1): 810-823.
|
32 |
YAO B, ZHANG Q L, YANG Z, et al. CircEZH2/miR-133b/IGF2BP2 aggravates colorectal cancer progression via enhancing the stability of m6A-modified CREB1 mRNA[J]. Mol Cancer, 2022, 21(1): 140.
|
33 |
LAO V V, GRADY W M. Epigenetics and colorectal cancer[J]. Nat Rev Gastroenterol Hepatol, 2011, 8(12): 686-700.
|
34 |
MOORE L D, LE T, FAN G P. DNA methylation and its basic function[J]. Neuropsychopharmacology, 2013, 38(1): 23-38.
|
35 |
JONES P A, BAYLIN S B. The fundamental role of epigenetic events in cancer[J]. Nat Rev Genet, 2002, 3(6): 415-428.
|
36 |
FERREIRA H J, DAVALOS V, DE MOURA M C, et al. Circular RNA CpG island hypermethylation-associated silencing in human cancer[J]. Oncotarget, 2018, 9(49): 29208-29219.
|
37 |
MAO G L, ZHOU B, XU W Q, et al. Hsa_circ_0040809 regulates colorectal cancer development by upregulating methyltransferase DNMT1 via targeting miR-515-5p[J]. J Gene Med, 2021, 23(12): e3388.
|
38 |
HAN G D, WEI Z J, CUI H B, et al. NUSAP1 gene silencing inhibits cell proliferation, migration and invasion through inhibiting DNMT1 gene expression in human colorectal cancer[J]. Exp Cell Res, 2018, 367(2): 216-221.
|
39 |
GU Y, CI C, ZHANG X D, et al. Prediction of circRNAs based on the DNA methylation-mediated feature sponge function in breast cancer[J]. Front Bioeng Biotechnol, 2019, 7: 365.
|
40 |
CHEN N F, ZHAO G, YAN X, et al. A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1[J]. Genome Biol, 2018, 19(1): 218.
|
41 |
ZHANG B G, YANG S, WANG J P. Circ_0084615 is an oncogenic circular RNA in colorectal cancer and promotes DNMT3A expression via repressing miR-599[J]. Pathol Res Pract, 2021, 224: 153494.
|
42 |
LUGER K, MÄDER A W, RICHMOND R K, et al. Crystal structure of the nucleosome core particle at 2.8 Å resolution[J]. Nature, 1997, 389(6648): 251-260.
|
43 |
CZERMIN B, MELFI R, MCCABE D, et al. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites[J]. Cell, 2002, 111(2): 185-196.
|
44 |
WANG Y, XUAN Z Q, WANG B C, et al. Hsa_circ_0071589 promotes carcinogenesis via the miR-600/EZH2 axis in colorectal cancer[J]. Biomedecine Pharmacother, 2018, 102: 1188-1194.
|
45 |
CHEN L Y, ZHI Z, WANG L, et al. NSD2 circular RNA promotes metastasis of colorectal cancer by targeting miR-199b-5p-mediated DDR1 and JAG1 signalling[J]. J Pathol, 2019, 248(1): 103-115.
|
46 |
HOLDT L M, KOHLMAIER A, TEUPSER D. Circular RNAs as therapeutic agents and targets[J]. Front Physiol, 2018, 9: 1262.
|
47 |
GE L C, ZHANG N, CHEN Z J, et al. Level of N6-methyladenosine in peripheral blood RNA: a novel predictive biomarker for gastric cancer[J]. Clin Chem, 2020, 66(2): 342-351.
|
48 |
BELTRÁN-GARCÍA J, OSCA-VERDEGAL R, MENA-MOLLÁ S, et al. Epigenetic IVD tests for personalized precision medicine in cancer[J]. Front Genet, 2019, 10: 621.
|