上海交通大学学报(医学版) ›› 2023, Vol. 43 ›› Issue (2): 230-236.doi: 10.3969/j.issn.1674-8115.2023.02.013
• 综述 • 上一篇
收稿日期:
2022-08-02
接受日期:
2022-11-03
出版日期:
2023-02-28
发布日期:
2023-02-28
通讯作者:
郑宪友
E-mail:ltx19821875723@163.com;zhengxianyou@126.com
作者简介:
刘铁鑫 (1999—),男,博士生;电子信箱:ltx19821875723@163.com。
基金资助:
LIU Tiexin(), LIN Junqing, ZHENG Xianyou()
Received:
2022-08-02
Accepted:
2022-11-03
Online:
2023-02-28
Published:
2023-02-28
Contact:
ZHENG Xianyou
E-mail:ltx19821875723@163.com;zhengxianyou@126.com
Supported by:
摘要:
脊髓损伤是一种能对患者的感觉功能、运动功能以及自主神经功能造成极大影响的疾病,它不仅给患者本人带来严重身心伤害,还对社会造成巨大的经济负担。随着医疗技术的发展,对脊髓损伤内在机制的研究也在不断深入,脊髓损伤的治疗方法层出不穷,但其疗效欠佳,因此亟需进一步探索新的脊髓损伤治疗策略,拓展新的治疗思路。诸多研究表明,各种亚细胞结构与脊髓损伤后损伤部位神经再生及功能恢复密切相关,因此靶向线粒体、溶酶体/自噬体、内质网、胞内体和蛋白酶体等亚细胞结构治疗脊髓损伤可望在促进脊髓损伤后神经再生与修复中起重要作用。多种靶向亚细胞结构的治疗策略在脊髓损伤治疗中效果显著,其中又以靶向线粒体或内质网治疗脊髓损伤的研究为主。靶向线粒体治疗主要着重于维持损伤部位线粒体能量代谢水平,而靶向内质网治疗主要着重于抑制内质网应激。该文就靶向亚细胞结构治疗在脊髓损伤修复中的应用研究进展作一综述,可望为开发脊髓损伤的新型靶向治疗策略、提高脊髓损伤治疗效果提供新思路。
中图分类号:
刘铁鑫, 林俊卿, 郑宪友. 靶向亚细胞结构治疗脊髓损伤的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(2): 230-236.
LIU Tiexin, LIN Junqing, ZHENG Xianyou. Research progress of subcellular structure-targeted therapy in spinal cord injury[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(2): 230-236.
图1 靶向亚细胞结构治疗脊髓损伤示意图Note: EHD1—Eps15 homology domain protein 1; SNX27—sorting nexin family member 27; Nec-1—necrostatin-1; NGF-hp—nerve growth factor heparin-poloxamer; ICA—icariin; HBO—hyperbaric oxygen therapy; NBP—Dl-3-n-butylphthalein; ALC—acetyl-l-carnitine; NACA—n-acetylcysteine amide; LrB—loracerin B; db-cAMP—dibutyl-cAMP.
Fig 1 Schematic diagram of targeted subcellular structures for spinal cord injury
1 | COURTINE G, SOFRONIEW M V. Spinal cord repair: advances in biology and technology[J]. Nat Med, 2019, 25(6): 898-908. |
2 | FEHLINGS M G, TETREAULT L A, WILSON J R, et al. A clinical practice guideline for the management of acute spinal cord injury: introduction, rationale, and scope[J]. Global Spine J, 2017, 7(3 Suppl): 84S-94S. |
3 | 陈星月, 陈栋, 陈春慧, 等. 中国创伤性脊髓损伤流行病学和疾病经济负担的系统评价[J]. 中国循证医学杂志, 2018, 18(2): 143-150. |
CHEN X Y, CHEN D, CHEN C H, et al. The epidemiology and disease burden of traumatic spinal cord injury in China: a systematic review[J]. Chinese Journal of Evidence-Based Medicine, 2018, 18(2): 143-150. | |
4 | PETROVA V, NIEUWENHUIS B, FAWCETT J W, et al. Axonal organelles as molecular platforms for axon growth and regeneration after injury[J]. Int J Mol Sci, 2021, 22(4): 1798. |
5 | BARTOLÁK-SUKI E, IMSIROVIC J, NISHIBORI Y, et al. Regulation of mitochondrial structure and dynamics by the cytoskeleton and mechanical factors[J]. Int J Mol Sci, 2017, 18(8): 1812. |
6 | HAN S M, BAIG H S, HAMMARLUND M. Mitochondria localize to injured axons to support regeneration[J]. Neuron, 2016, 92(6): 1308-1323. |
7 | CAVALLUCCI V, BISICCHIA E, CENCIONI M T, et al. Acute focal brain damage alters mitochondrial dynamics and autophagy in axotomized neurons[J]. Cell Death Dis, 2014, 5(11): e1545. |
8 | MALLA B, NIESNER R, HAUSER A, et al. Imaging and analysis of neuronal mitochondria in murine acute brain slices[J]. J Neurosci Methods, 2022, 372: 109558. |
9 | BALLABIO A, BONIFACINO J S. Lysosomes as dynamic regulators of cell and organismal homeostasis[J]. Nat Rev Mol Cell Biol, 2020, 21(2): 101-118. |
10 | STAVOE A K H, HOLZBAUR E L F. Autophagy in neurons[J]. Annu Rev Cell Dev Biol, 2019, 35: 477-500. |
11 | SAKAMOTO K, OZAKI T, KO Y C, et al. Glycan sulfation patterns define autophagy flux at axon tip via PTPRσ-cortactin axis[J]. Nat Chem Biol, 2019, 15(7): 699-709. |
12 | WEI X Y, LUO L F, CHEN J Z. Roles of mTOR signaling in tissue regeneration[J]. Cells, 2019, 8(9): 1075. |
13 | RABANAL-RUIZ Y, KOROLCHUK V I. mTORC1 and nutrient homeostasis: the central role of the lysosome[J]. Int J Mol Sci, 2018, 19(3): 818. |
14 | JEHAN C, CARTIER D, BUCHARLES C, et al. Emerging roles of ER-resident selenoproteins in brain physiology and physiopathology[J]. Redox Biol, 2022, 55: 102412. |
15 | JACQUEMYN J, CASCALHO A, GOODCHILD R E. The ins and outs of endoplasmic reticulum-controlled lipid biosynthesis[J]. EMBO Rep, 2017, 18(11): 1905-1921. |
16 | TOJIMA T, KAMIGUCHI H. Exocytic and endocytic membrane trafficking in axon development[J]. Dev Growth Differ, 2015, 57(4): 291-304. |
17 | WOJNACKI J, GALLI T. Membrane traffic during axon development[J]. Dev Neurobiol, 2016, 76(11): 1185-1200. |
18 | YAP C C, WINCKLER B. Harnessing the power of the endosome to regulate neural development[J]. Neuron, 2012, 74(3): 440-451. |
19 | KORHONEN L, LINDHOLM D. The ubiquitin proteasome system in synaptic and axonal degeneration: a new twist to an old cycle[J]. J Cell Biol, 2004, 165(1): 27-30. |
20 | LEE M, LIU Y C, CHEN C, et al. Ecm29-mediated proteasomal distribution modulates excitatory GABA responses in the developing brain[J]. J Cell Biol, 2020, 219(2): e201903033. |
21 | DI PAOLO A, GARAT J, EASTMAN G, et al. Functional genomics of axons and synapses to understand neurodegenerative diseases[J]. Front Cell Neurosci, 2021, 15: 686722. |
22 | NJOMEN E, TEPE J J. Proteasome activation as a new therapeutic approach to target proteotoxic disorders[J]. J Med Chem, 2019, 62(14): 6469-6481. |
23 | TAKABATAKE M, GOSHIMA Y, SASAKI Y. Semaphorin-3A promotes degradation of fragile X mental retardation protein in growth cones via the ubiquitin-proteasome pathway[J]. Front Neural Circuits, 2020, 14: 5. |
24 | JIN E J, KO H R, HWANG I, et al. Akt regulates neurite growth by phosphorylation-dependent inhibition of radixin proteasomal degradation[J]. Sci Rep, 2018, 8(1): 2557. |
25 | HE L H, LEMASTERS J J. Regulated and unregulated mitochondrial permeability transition pores: a new paradigm of pore structure and function?[J]. FEBS Lett, 2002, 512(1/2/3): 1-7. |
26 | MCEWEN M L, SULLIVAN P G, SPRINGER J E. Pretreatment with the cyclosporin derivative, NIM811, improves the function of synaptic mitochondria following spinal cord contusion in rats[J]. J Neurotrauma, 2007, 24(4): 613-624. |
27 | PATEL S P, SULLIVAN P G, LYTTLE T S, et al. Acetyl-L-carnitine treatment following spinal cord injury improves mitochondrial function correlated with remarkable tissue sparing and functional recovery[J]. Neuroscience, 2012, 210: 296-307. |
28 | PATEL S P, SULLIVAN P G, PANDYA J D, et al. N-acetylcysteine amide preserves mitochondrial bioenergetics and improves functional recovery following spinal trauma[J]. Exp Neurol, 2014, 257: 95-105. |
29 | PATEL S P, COX D H, GOLLIHUE J L, et al. Pioglitazone treatment following spinal cord injury maintains acute mitochondrial integrity and increases chronic tissue sparing and functional recovery[J]. Exp Neurol, 2017, 293: 74-82. |
30 | WANG Q Q, CAI H X, HU Z X, et al. Loureirin B promotes axon regeneration by inhibiting endoplasmic reticulum stress: induced mitochondrial dysfunction and regulating the Akt/GSK-3β pathway after spinal cord injury[J]. J Neurotrauma, 2019, 36(12): 1949-1964. |
31 | SCHOLPA N E, WILLIAMS H, WANG W X, et al. Pharmacological stimulation of mitochondrial biogenesis using the food and drug administration-approved β2-adrenoreceptor agonist formoterol for the treatment of spinal cord injury[J]. J Neurotrauma, 2019, 36(6): 962-972. |
32 | GOLLIHUE J L, PATEL S P, RABCHEVSKY A G. Mitochondrial transplantation strategies as potential therapeutics for central nervous system trauma[J]. Neural Regen Res, 2018, 13(2): 194-197. |
33 | GOLLIHUE J L, PATEL S P, ELDAHAN K C, et al. Effects of mitochondrial transplantation on bioenergetics, cellular incorporation, and functional recovery after spinal cord injury[J]. J Neurotrauma, 2018, 35(15): 1800-1818. |
34 | KANNO H, OZAWA H, SEKIGUCHI A, et al. The role of mTOR signaling pathway in spinal cord injury[J]. Cell Cycle, 2012, 11(17): 3175-3179. |
35 | ZHANG D, XUAN J, ZHENG B B, et al. Metformin improves functional recovery after spinal cord injury via autophagy flux stimulation[J]. Mol Neurobiol, 2017, 54(5): 3327-3341. |
36 | WU Y Q, XIONG J, HE Z L, et al. Metformin promotes microglial cells to facilitate myelin debris clearance and accelerate nerve repairment after spinal cord injury[J]. Acta Pharmacol Sin, 2022, 43(6): 1360-1371. |
37 | HETZ C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond[J]. Nat Rev Mol Cell Biol, 2012, 13(2): 89-102. |
38 | BISICCHIA E, MASTRANTONIO R, NOBILI A, et al. Restoration of ER proteostasis attenuates remote apoptotic cell death after spinal cord injury by reducing autophagosome overload[J]. Cell Death Dis, 2022, 13(4): 381. |
39 | ZHOU Z J, HU B W, LYU Q N, et al. MiR-384-5p promotes spinal cord injury recovery in rats through suppressing of autophagy and endoplasmic reticulum stress[J]. Neurosci Lett, 2020, 727: 134937. |
40 | HE M, DING Y T, CHU C, et al. Autophagy induction stabilizes microtubules and promotes axon regeneration after spinal cord injury[J]. Proc Natl Acad Sci USA, 2016, 113(40): 11324-11329. |
41 | WANG S, WU J, ZENG Y Z, et al. Necrostatin-1 mitigates endoplasmic reticulum stress after spinal cord injury[J]. Neurochem Res, 2017, 42(12): 3548-3558. |
42 | LI Y, ZHANG J, ZHOU K L, et al. Elevating sestrin2 attenuates endoplasmic reticulum stress and improves functional recovery through autophagy activation after spinal cord injury[J]. Cell Biol Toxicol, 2021, 37(3): 401-419. |
43 | FU H T, HU D, CHEN J L, et al. Repair of the injured spinal cord by schwann cell transplantation[J]. Front Neurosci, 2022, 16: 800513. |
44 | ZHAO Y Z, JIANG X, XIAO J, et al. Using NGF heparin-poloxamer thermosensitive hydrogels to enhance the nerve regeneration for spinal cord injury[J]. Acta Biomater, 2016, 29: 71-80. |
45 | LI H T, ZHANG X R, QI X, et al. Icariin inhibits endoplasmic reticulum stress-induced neuronal apoptosis after spinal cord injury through modulating the PI3K/AKT signaling pathway[J]. Int J Biol Sci, 2019, 15(2): 277-286. |
46 | LIU X H, YANG J, LI Z, et al. Hyperbaric oxygen treatment protects against spinal cord injury by inhibiting endoplasmic reticulum stress in rats[J]. Spine, 2015, 40(24): E1276-E1283. |
47 | WU Q, ZHANG Y J, GAO J Y, et al. Aquaporin-4 mitigates retrograde degeneration of rubrospinal neurons by facilitating edema clearance and glial scar formation after spinal cord injury in mice[J]. Mol Neurobiol, 2014, 49(3): 1327-1337. |
48 | ZHENG B B, ZHOU Y L, ZHANG H Y, et al. Dl-3-n-butylphthalide prevents the disruption of blood-spinal cord barrier via inhibiting endoplasmic reticulum stress following spinal cord injury[J]. Int J Biol Sci, 2017, 13(12): 1520-1531. |
49 | WANG H L, WU Y Q, HAN W, et al. Hydrogen sulfide ameliorates blood-spinal cord barrier disruption and improves functional recovery by inhibiting endoplasmic reticulum stress-dependent autophagy[J]. Front Pharmacol, 2018, 9: 858. |
50 | KOBAYASHI H, ETOH K, FUKUDA M. Rab35 is translocated from Arf6-positive perinuclear recycling endosomes to neurite tips during neurite outgrowth[J]. Small GTPases, 2014, 5(3): e983874. |
51 | WU C S, CUI Z M, LIU Y H, et al. The importance of EHD1 in neurite outgrowth contributing to the functional recovery after spinal cord injury[J]. Int J Dev Neurosci, 2016, 52: 24-32. |
52 | GALLON M, CLAIRFEUILLE T, STEINBERG F, et al. A unique PDZ domain and arrestin-like fold interaction reveals mechanistic details of endocytic recycling by SNX27-retromer[J]. Proc Natl Acad Sci USA, 2014, 111(35): E3604-E3613. |
53 | ZENG Y Z, WANG N W, GUO T T, et al. Snx27 deletion promotes recovery from spinal cord injury by neuroprotection and reduces macrophage/microglia proliferation[J]. Front Neurol, 2018, 9: 1059. |
54 | SPITZBARTH I, MOORE S A, STEIN V M, et al. Current insights into the pathology of canine intervertebral disc extrusion-induced spinal cord injury[J]. Front Vet Sci, 2020, 7: 595796. |
55 | MYEKU N, WANG H, FIGUEIREDO-PEREIRA M E. cAMP stimulates the ubiquitin/proteasome pathway in rat spinal cord neurons[J]. Neurosci Lett, 2012, 527(2): 126-131. |
56 | MORIWAKI K, CHAN F K M. RIP3: a molecular switch for necrosis and inflammation[J]. Genes Dev, 2013, 27(15): 1640-1649. |
57 | WU C S, CHEN J J, LIU Y H, et al. Upregulation of PSMB4 is associated with the necroptosis after spinal cord injury[J]. Neurochem Res, 2016, 41(11): 3103-3112. |
58 | TICA J R, BRADBURY E J, DIDANGELOS A. Combined transcriptomics, proteomics and bioinformatics identify drug targets in spinal cord injury[J]. Int J Mol Sci, 2018, 19(5): 1461. |
[1] | 韩永琪, 韩达, 閤谦, 姬丁坤, 谭蔚泓. 核酸适体药物偶联物——肿瘤精准治疗新风向[J]. 上海交通大学学报(医学版), 2022, 42(9): 1176-1181. |
[2] | 韩稷钰, 王衍鸿, 万大千. 下肢外骨骼康复机器人的研究进展及发展趋势[J]. 上海交通大学学报(医学版), 2022, 42(2): 241-246. |
[3] | 李若楠, 陈小科, 许元元, 谭强. ⅠB~ⅢA期非小细胞肺癌患者术后辅助靶向治疗研究进展[J]. 上海交通大学学报(医学版), 2022, 42(11): 1612-1619. |
[4] | 张佳玲, 张凤春, 徐迎春. 乳腺癌脑转移系统治疗的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(5): 671-677. |
[5] | 李 超,糜坚青,王 瑾. 费城染色体样急性淋巴细胞白血病的研究进展[J]. 上海交通大学学报(医学版), 2020, 40(9): 1294-1301. |
[6] | 韦小梅1,胡三莲2,钱会娟2,魏薇萍1,王飞燕1. 脊髓损伤肠道功能障碍干预方案的临床应用研究[J]. 上海交通大学学报(医学版), 2020, 40(6): 828-834. |
[7] | 林俊卿,郑宪友,鲍丙波,李星玮,高 涛,黄腾立. 巨噬细胞在脊髓损伤后自我修复中的作用及其治疗应用进展[J]. 上海交通大学学报(医学版), 2020, 40(1): 118-. |
[8] | 高涛,朱晓中,鲍丙波,李星玮,林俊卿,黄腾立,柴益民,张长青,郑宪友. 大鼠脊髓损伤后直肠平滑肌的结构变化[J]. 上海交通大学学报(医学版), 2019, 39(9): 963-. |
[9] | 阮昕 1,张颖婷 1,韩可琪 1,林龙帅 2,陈晨 1,岳铭 1,王楚翘 1,孙英刚 3,赵庆华 2,贺明 1. SIRT7通过抑制内质网应激蛋白 GRP78减轻脂多糖或 D-氨基半乳糖 /脂多糖诱导的肝细胞凋亡[J]. 上海交通大学学报(医学版), 2019, 39(8): 812-. |
[10] | 李琪 1,周向东 1,曾曼 1,Victor P. KOLOSOV2,Juliy M. PERELMAN2. 内质网应激通路需肌醇酶 1 α/X盒结合蛋白 1在中性粒细胞弹力蛋白酶诱导的气道黏液分泌中的作用[J]. 上海交通大学学报(医学版), 2019, 39(1): 21-. |
[11] | 高涛,朱晓中,鲍丙波,李星玮,郑宪友. 脊髓损伤神经源性肠道功能障碍研究进展[J]. 上海交通大学学报(医学版), 2018, 38(9): 1116-. |
[12] | 菅朝慧,包玉倩. 自噬与非酒精性脂肪性肝病的研究进展[J]. 上海交通大学学报(医学版), 2018, 38(6): 690-. |
[13] | 刘 杨,高玉亭,苗宇船. 丹参注射液对大鼠脊髓损伤后脑源性神经营养因子及胰岛素样生长因子 -1 表达的影响[J]. 上海交通大学学报(医学版), 2018, 38(3): 272-. |
[14] | 朱晓中,朱弘一,鲍丙波,李星玮,高 涛,郑宪友 . PRV 逆行示踪技术验证神经根移位重建大鼠排便功能的有效性[J]. 上海交通大学学报(医学版), 2017, 37(9): 1196-. |
[15] | 唐维,夏永智,刘敬贤,刘露,晏怡 . 鱼腥草素钠对大鼠脊髓损伤神经元的影响[J]. 上海交通大学学报(医学版), 2017, 37(12): 1594-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||