上海交通大学学报(医学版) ›› 2023, Vol. 43 ›› Issue (5): 631-640.doi: 10.3969/j.issn.1674-8115.2023.05.015
• 综述 • 上一篇
李瑛1,2(), 谭阳霞2, 尹虹心2, 蒋雁翎1,2, 陈立1, 蒙国宇2()
收稿日期:
2022-12-19
接受日期:
2023-02-24
出版日期:
2023-05-28
发布日期:
2023-07-11
通讯作者:
蒙国宇
E-mail:3258414023@qq.com;guoyumeng@shsmu.edu.cn
作者简介:
李 瑛(1994—),女,硕士生;电子信箱:3258414023@qq.com。
基金资助:
LI Ying1,2(), TAN Yangxia2, YIN Hongxin2, JIANG Yanling1,2, CHEN Li1, MENG Guoyu2()
Received:
2022-12-19
Accepted:
2023-02-24
Online:
2023-05-28
Published:
2023-07-11
Contact:
MENG Guoyu
E-mail:3258414023@qq.com;guoyumeng@shsmu.edu.cn
Supported by:
摘要:
由染色体易位引起的融合基因已成为白血病的主要致病因素。锌指蛋白384(zinc finger protein 384,ZNF384)融合作为急性白血病(acute leukemia,AL)中的非典型融合亚型,在不同的年龄群体中广泛发生。ZNF384具有丰富的融合伴侣,其中E1A结合蛋白p300(E1A binding protein p300,EP300)、转录因子3(transcription factor 3,TCF3)、TATA-box binding protein associated factor 15(TAF15)的融合频率最高。这些融合蛋白均保留了完整的ZNF384结构,但融合伴侣则有不同程度的缺失,说明不同的ZNF384融合亚型之间具有相似的致AL发生发展机制。现有研究主要认为ZNF384融合蛋白通过染色质重塑调控下游蛋白的转录表达,在造血干细胞的分化、癌细胞的增殖凋亡和基因组修复中发挥潜在作用。ZNF384融合患者同时表达淋系和髓系特有的抗原,在疾病的进展中具有谱系转化特性,丰富的免疫表型给治疗方式带来了不确定性,并与融合亚型、发病年龄一起影响患者的临床结局。该文通过对近10年已发表的案例和大型队列研究进行统计归纳分析,进一步确认了ZNF384融合及其各亚型AL在现有研究背景下的发生频率,总结了已有的机制信息,并对不同治疗方式下ZNF384融合患者的预后作了简要分析,以期为后续针对这一独特亚型AL的诊疗和研究提供参考。
中图分类号:
李瑛, 谭阳霞, 尹虹心, 蒋雁翎, 陈立, 蒙国宇. ZNF384融合亚型急性白血病的发病机制及预后研究进展[J]. 上海交通大学学报(医学版), 2023, 43(5): 631-640.
LI Ying, TAN Yangxia, YIN Hongxin, JIANG Yanling, CHEN Li, MENG Guoyu. Research progress in the pathogenesis and prognosis of ZNF384 fusion subtype acute leukemia[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(5): 631-640.
Number | Total | Child (≤18 years) | Adult (>18 years) | ZNF384 fusion | ALL | MPAL | Publication year |
---|---|---|---|---|---|---|---|
1 | 173 | 4 | ‒ | 4 | 4 | ‒ | 2022[ |
2 | 652 | ‒ | 11 | 11 | 11 | ‒ | 2022[ |
3 | 643 | 17 | ‒ | 17 | 9 | 8 | 2021[ |
4 | 242 | ‒ | 47 | 47 | 47 | ‒ | 2021[ |
5 | 1 229 | ‒ | 9 | 9 | 9 | ‒ | 2021[ |
6 | 598 | 6 | 1 | 7 | 7 | ‒ | 2021[ |
7 | 56 | 1 | 9 | 10 | 9 | 1 | 2020[ |
8 | 37 | ‒ | 3 | 3 | 3 | ‒ | 2020[ |
9 | 115 | 15 | ‒ | 15 | ‒ | 15 | 2018[ |
10 | 274 | 4 | 6 | 10 | 10 | ‒ | 2018[ |
11 | 1 223 | 39 | 22 | 61 | 61 | ‒ | 2018[ |
12 | 216 | 25 | ‒ | 25 | 25 | ‒ | 2017[ |
13 | 240 | 7 | ‒ | 7 | 6 | 1 | 2016[ |
14 | 401 | 6 | ‒ | 6 | 6 | ‒ | 2015[ |
Summary | 6 099 | 124 | 108 | 232 | 207 | 25 |
表1 ZNF384 融合在AL中不同年龄段、不同免疫表型中的发生情况(n)
Tab 1 Frequency of ZNF384 fusion in different age groups and different immune phenotypes in AL (n)
Number | Total | Child (≤18 years) | Adult (>18 years) | ZNF384 fusion | ALL | MPAL | Publication year |
---|---|---|---|---|---|---|---|
1 | 173 | 4 | ‒ | 4 | 4 | ‒ | 2022[ |
2 | 652 | ‒ | 11 | 11 | 11 | ‒ | 2022[ |
3 | 643 | 17 | ‒ | 17 | 9 | 8 | 2021[ |
4 | 242 | ‒ | 47 | 47 | 47 | ‒ | 2021[ |
5 | 1 229 | ‒ | 9 | 9 | 9 | ‒ | 2021[ |
6 | 598 | 6 | 1 | 7 | 7 | ‒ | 2021[ |
7 | 56 | 1 | 9 | 10 | 9 | 1 | 2020[ |
8 | 37 | ‒ | 3 | 3 | 3 | ‒ | 2020[ |
9 | 115 | 15 | ‒ | 15 | ‒ | 15 | 2018[ |
10 | 274 | 4 | 6 | 10 | 10 | ‒ | 2018[ |
11 | 1 223 | 39 | 22 | 61 | 61 | ‒ | 2018[ |
12 | 216 | 25 | ‒ | 25 | 25 | ‒ | 2017[ |
13 | 240 | 7 | ‒ | 7 | 6 | 1 | 2016[ |
14 | 401 | 6 | ‒ | 6 | 6 | ‒ | 2015[ |
Summary | 6 099 | 124 | 108 | 232 | 207 | 25 |
图2 ZNF384 部分融合亚型的断点统计以及融合蛋白结构图Note: The exon6/6-exon2/3 on the left side of the figure indicates that there are two types of fusion breakpoints between EP300 and ZNF384, exon6-exon2 and exon6-exon3. The small colored squares below the figure represent protein domains. TAZ1—transcriptional adapter zinc binding 1.
Fig 2 Breakpoint statistics and fusion protein structure diagram of some ZNF384 fusion subtypes
1 | QIAN M X, ZHANG H, KHAM S K, et al. Whole-transcriptome sequencing identifies a distinct subtype of acute lymphoblastic leukemia with predominant genomic abnormalities of EP300 and CREBBP[J]. Genome Res, 2017, 27(2): 185-195. |
2 | LI J F, DAI Y T, LILLJEBJÖRN H, et al. Transcriptional landscape of B cell precursor acute lymphoblastic leukemia based on an international study of 1, 223 cases[J]. Proc Natl Acad Sci USA, 2018, 115(50): E11711-E11720. |
3 | ZALIOVA M, STUCHLY J, WINKOWSKA L, et al. Genomic landscape of pediatric B-other acute lymphoblastic leukemia in a consecutive European cohort[J]. Haematologica, 2019, 104(7): 1396-1406. |
4 | LI J F, DAI Y T, WU L, et al. Emerging molecular subtypes and therapeutic targets in B-cell precursor acute lymphoblastic leukemia[J]. Front Med, 2021, 15(3): 347-371. |
5 | MÄKINEN V P, REHN J, BREEN J, et al. Multi-cohort transcriptomic subtyping of B-cell acute lymphoblastic leukemia[J]. Int J Mol Sci, 2022, 23(9): 4574. |
6 | LIU Y F, WANG B Y, ZHANG W N, et al. Genomic profiling of adult and pediatric B-cell acute lymphoblastic leukemia[J]. EBioMedicine, 2016, 8: 173-183. |
7 | QIN Y Z, JIANG Q, XU L P, et al. The prognostic significance of ZNF384 fusions in adult ph-negative B-cell precursor acute lymphoblastic leukemia: a comprehensive cohort study from a single Chinese center[J]. Front Oncol, 2021, 11: 632532. |
8 | GOCHO Y, KIYOKAWA N, ICHIKAWA H, et al. A novel recurrent EP300-ZNF384 gene fusion in B-cell precursor acute lymphoblastic leukemia[J]. Leukemia, 2015, 29(12): 2445-2448. |
9 | DICKERSON K M, QU C X, GAO Q S, et al. ZNF384 fusion oncoproteins drive lineage aberrancy in acute leukemia[J]. Blood Cancer Discov, 2022, 3(3): 240-263. |
10 | WU Z Y, ZHANG F, LIU C Z, et al. Whole transcriptome sequencing reveals a TCF4-ZNF384 fusion in acute lymphoblastic leukemia[J]. Front Oncol, 2022, 12: 900054. |
11 | HIRABAYASHI S, BUTLER E R, OHKI K, et al. Clinical characteristics and outcomes of B-ALL with ZNF384 rearrangements: a retrospective analysis by the Ponte di Legno Childhood ALL Working Group[J]. Leukemia, 2021, 35(11): 3272-3277. |
12 | ALEXANDER T B, GU Z H, IACOBUCCI I, et al. The genetic basis and cell of origin of mixed phenotype acute leukaemia[J]. Nature, 2018, 562(7727): 373-379. |
13 | HIRABAYASHI S, OHKI K, NAKABAYASHI K, et al. ZNF384-related fusion genes define a subgroup of childhood B-cell precursor acute lymphoblastic leukemia with a characteristic immunotype[J]. Haematologica, 2017, 102(1): 118-129. |
14 | YAGUCHI A, ISHIBASHI T, TERADA K, et al. EP300-ZNF384 fusion gene product up-regulates GATA3 gene expression and induces hematopoietic stem cell gene expression signature in B-cell precursor acute lymphoblastic leukemia cells[J]. Int J Hematol, 2017, 106(2): 269-281. |
15 | MCCLURE B J, HEATLEY S L, KOK C H, et al. Pre-B acute lymphoblastic leukaemia recurrent fusion, EP300-ZNF384, is associated with a distinct gene expression[J]. Br J Cancer, 2018, 118(7): 1000-1004. |
16 | YAMAMOTO K, KAWAMOTO S, MIZUTANI Y, et al. Mixed phenotype acute leukemia with t (12;17) (p13;q21)/TAF15-ZNF384 and other chromosome abnormalities[J]. Cytogenet Genome Res, 2016, 149(3): 165-170. |
17 | PING N N, QIU H Y, WANG Q, et al. Establishment and genetic characterization of a novel mixed-phenotype acute leukemia cell line with EP300-ZNF384 fusion[J]. J Hematol Oncol, 2015, 8: 100. |
18 | MARTINI A, LA STARZA R, JANSSEN H, et al. Recurrent rearrangement of the Ewing′s sarcoma gene, EWSR1, or its homologue, TAF15, with the transcription factor CIZ/NMP4 in acute leukemia[J]. Cancer Res, 2002, 62(19): 5408-5412. |
19 | IACOBUCCI I, KIMURA S, MULLIGHAN C G. Biologic and therapeutic implications of genomic alterations in acute lymphoblastic leukemia[J]. J Clin Med, 2021, 10(17): 3792. |
20 | MA J, GUAN J, CHEN B. ZNF384 rearrangement in acute lymphocytic leukemia with renal involvement as the first manifestation is associated with a poor prognosis: a case report[J]. Mol Cytogenet, 2022, 15(1): 4. |
21 | NISHIMURA A, HASEGAWA D, HIRABAYASHI S, et al. Very late relapse cases of TCF3-ZNF384-positive acute lymphoblastic leukemia[J]. Pediatr Blood Cancer, 2019, 66(11): e27891. |
22 | JING Y, LI Y F, WAN H, et al. Detection of EP300-ZNF384 fusion in patients with acute lymphoblastic leukemia using RNA fusion gene panel sequencing[J]. Ann Hematol, 2020, 99(11): 2611-2617. |
23 | OBERLEY M J, GAYNON P S, BHOJWANI D, et al. Myeloid lineage switch following chimeric antigen receptor T-cell therapy in a patient with TCF3-ZNF384 fusion-positive B-lymphoblastic leukemia[J]. Pediatr Blood Cancer, 2018, 65(9): e27265. |
24 | SCHWAB C, HARRISON C J. Advances in B-cell precursor acute lymphoblastic leukemia genomics[J]. HemaSphere, 2018, 2(4): e53. |
25 | GERR H, ZIMMERMANN M, SCHRAPPE M, et al. Acute leukaemias of ambiguous lineage in children: characterization, prognosis and therapy recommendations[J]. Br J Haematol, 2010, 149(1): 84-92. |
26 | TRAN T H, LANGLOIS S, MELOCHE C, et al. Whole-transcriptome analysis in acute lymphoblastic leukemia: a report from the DFCI ALL Consortium Protocol 16-001[J]. Blood Adv, 2022, 6(4): 1329-1341. |
27 | MOORMAN A V, BARRETTA E, BUTLER E R, et al. Prognostic impact of chromosomal abnormalities and copy number alterations in adult B-cell precursor acute lymphoblastic leukaemia: a UKALL14 study[J]. Leukemia, 2022, 36(3): 625-636. |
28 | ZALIOVA M, WINKOWSKA L, STUCHLY J, et al. A novel class of ZNF384 aberrations in acute leukemia[J]. Blood Adv, 2021, 5(21): 4393-4397. |
29 | PAIETTA E, ROBERTS K G, WANG V, et al. Molecular classification improves risk assessment in adult BCR-ABL1-negative B-ALL[J]. Blood, 2021, 138(11): 948-958. |
30 | JEHA S, CHOI J, ROBERTS K G, et al. Clinical significance of novel subtypes of acute lymphoblastic leukemia in the context of minimal residual disease-directed therapy[J]. Blood Cancer Discov, 2021, 2(4): 326-337. |
31 | 姚子龙, 李艳芬, 李猛, 等. 伴EP300-ZNF384融合基因阳性的急性B淋巴细胞白血病临床特点分析[J]. 中国实验血液学杂志, 2020, 28(1): 24-28. |
YAO Z L, LI Y F, LI M, et al. Analysis of clinical characteristics of acute B lymphoblastic leukemia with EP300-ZNF384 fusion gene positive [J]. Journal of Experimental Hematology, 2020, 28(1): 24-28. | |
32 | SHAGO M, ABLA O, HITZLER J, et al. Frequency and outcome of pediatric acute lymphoblastic leukemia with ZNF384 gene rearrangements including a novel translocation resulting in an ARID1B/ZNF384 gene fusion[J]. Pediatr Blood Cancer, 2016, 63(11): 1915-1921. |
33 | OTA T, SUZUKI Y, NISHIKAWA T, et al. Complete sequencing and characterization of 21, 243 full-length human cDNAs[J]. Nat Genet, 2004, 36(1): 40-45. |
34 | SEETHARAM A, BAI Y, STUART G W. A survey of well conserved families of C2H2 zinc-finger genes in Daphnia[J]. BMC Genomics, 2010, 11: 276. |
35 | FEISTER H A, TORRUNGRUANG K, THUNYAKITPISAL P, et al. NP/NMP4 transcription factors have distinct osteoblast nuclear matrix subdomains[J]. J Cell Biochem, 2000, 79(3): 506-517. |
36 | FAN Z Y, TARDIF G, BOILEAU C, et al. Identification in human osteoarthritic chondrocytes of proteins binding to the novel regulatory site AGRE in the human matrix metalloprotease 13 proximal promoter[J]. Arthritis Rheum, 2006, 54(8): 2471-2480. |
37 | YOUNG S K, SHAO Y, BIDWELL J P, et al. Nuclear matrix protein 4 is a novel regulator of ribosome biogenesis and controls the unfolded protein response via repression of Gadd34 expression[J]. J Biol Chem, 2016, 291(26): 13780-13788. |
38 | JIN H L, VAN'T HOF R J, ALBAGHA O M, et al. Promoter and intron 1 polymorphisms of COL1A1 interact to regulate transcription and susceptibility to osteoporosis[J]. Hum Mol Genet, 2009, 18(15): 2729-2738. |
39 | SHAO Y, WICHERN E, CHILDRESS P J, et al. Loss of Nmp4 optimizes osteogenic metabolism and secretion to enhance bone quality[J]. Am J Physiol Endocrinol Metab, 2019, 316(5): E749-E772. |
40 | YAN Z H, ZHOU Y, YANG Y, et al. Zinc finger protein 384 enhances colorectal cancer metastasis by upregulating MMP2[J]. Oncol Rep, 2022, 47(3): 49. |
41 | GAO Y Y, LING Z Y, ZHU Y R, et al. The histone acetyltransferase HBO1 functions as a novel oncogenic gene in osteosarcoma[J]. Theranostics, 2021, 11(10): 4599-4615. |
42 | WAN F, ZHOU J, CHEN X, et al. Overexpression and mutation of ZNF384 is associated with favorable prognosis in breast cancer patients[J]. Transl Cancer Res, 2019, 8(3): 779-787. |
43 | MENG Q X, WANG K N, LI J H, et al. ZNF384-ZEB1 feedback loop regulates breast cancer metastasis[J]. Mol Med, 2022, 28(1): 111. |
44 | CHEN G, CHEN J X, QIAO Y T, et al. ZNF830 mediates cancer chemoresistance through promoting homologous-recombination repair[J]. Nucleic Acids Res, 2018, 46(3): 1266-1279. |
45 | SINGH J K, SMITH R, ROTHER M B, et al. Zinc finger protein ZNF384 is an adaptor of Ku to DNA during classical non-homologous end-joining[J]. Nat Commun, 2021, 12(1): 6560. |
46 | CHILDRESS P, STAYROOK K R, ALVAREZ M B, et al. Genome-wide mapping and interrogation of the Nmp4 antianabolic bone axis[J]. Mol Endocrinol, 2015, 29(9): 1269-1285. |
47 | LIU S G, YUAN X Q, SU H, et al. ZNF384: a potential therapeutic target for psoriasis and alzheimer's disease through inflammation and metabolism[J]. Front Immunol, 2022, 13: 892368. |
48 | NYQUIST K B, THORSEN J, ZELLER B, et al. Identification of the TAF15-ZNF384 fusion gene in two new cases of acute lymphoblastic leukemia with a t (12;17) (p13;q12)[J]. Cancer Genet, 2011, 204(3): 147-152. |
49 | CHAN H M, LA THANGUE N B. p300/CBP proteins: hats for transcriptional bridges and scaffolds[J]. J Cell Sci, 2001, 114(pt 13): 2363-2373. |
50 | BLACK J C, CHOI J E, LOMBARDO S R, et al. A mechanism for coordinating chromatin modification and preinitiation complex assembly[J]. Mol Cell, 2006, 23(6): 809-818. |
51 | DUTTO I, SCALERA C, PROSPERI E. CREBBP and p300 lysine acetyl transferases in the DNA damage response[J]. Cell Mol Life Sci, 2018, 75(8): 1325-1338. |
52 | ATTAR N, KURDISTANI S K. Exploitation of EP300 and CREBBP lysine acetyltransferases by cancer[J]. Cold Spring Harb Perspect Med, 2017, 7(3): a026534. |
53 | ENGEL I, MURRE C. The function of E- and Id proteins in lymphocyte development[J]. Nat Rev Immunol, 2001, 1(3): 193-199. |
54 | ZHANG X, YUAN X, ZHU W, et al. SALL4: an emerging cancer biomarker and target[J]. Cancer Lett, 2015, 357(1): 55-62. |
55 | JIANG Y, JI Q K, LONG X Y, et al. CLCF1 is a novel potential immune-related target with predictive value for prognosis and immunotherapy response in glioma[J]. Front Immunol, 2022, 13: 810832. |
56 | DEMERLÉ C, GORVEL L, OLIVE D. BTLA-HVEM couple in health and diseases: insights for immunotherapy in lung cancer[J]. Front Oncol, 2021, 11: 682007. |
57 | ALVES J, WURDAK H, GARAY-MALPARTIDA H M, et al. TAF15 and the leukemia-associated fusion protein TAF15-CIZ/NMP4 are cleaved by caspases-3 and-7[J]. Biochem Biophys Res Commun, 2009, 384(4): 495-500. |
58 | ROSSOW K L, JANKNECHT R. The Ewing′s sarcoma gene product functions as a transcriptional activator[J]. Cancer Res, 2001, 61(6): 2690-2695. |
59 | GEORGAKOPOULOS N, DIAMANTOPOULOS P, MICCI F, et al. An adult patient with early pre-B acute lymphoblastic leukemia with t(12;17)(p13;q21)/ZNF384-TAF15[J]. In Vivo, 2018, 32(5): 1241-1245. |
60 | LIANG J J, PENG H, WANG J J, et al. Relationship between the structure and function of the transcriptional regulator E2A[J]. J Biol Res (Thessalon), 2021, 28(1): 15. |
61 | RAO C, MALAGUTI M, MASON J O, et al. The transcription factor E2A drives neural differentiation in pluripotent cells[J]. Development, 2020, 147(12): dev184093. |
62 | LÓPEZ-MENÉNDEZ C, VÁZQUEZ-NAHARRO A, SANTOS V, et al. E2A modulates stemness, metastasis, and therapeutic resistance of breast cancer[J]. Cancer Res, 2021, 81(17): 4529-4544. |
63 | ZHOU B Q, CHU X R, TIAN H, et al. The clinical outcomes and genomic landscapes of acute lymphoblastic leukemia patients with E2A-PBX1: a 10-year retrospective study[J]. Am J Hematol, 2021, 96(11): 1461-1471. |
64 | BRAMBILLASCA F, MOSNA G, BALLABIO E, et al. Promoter analysis of TFPT (FB1), a molecular partner of TCF3 (E2A) in childhood acute lymphoblastic leukemia[J]. Biochem Biophys Res Commun, 2001, 288(5): 1250-1257. |
65 | BAUDIS M, PRIMA V, TUNG Y H, et al. ABCB1 over-expression and drug-efflux in acute lymphoblastic leukemia cell lines with t(17;19) and E2A-HLF expression[J]. Pediatr Blood Cancer, 2006, 47(6): 757-764. |
66 | ZHAO X J, WANG P, DIEDRICH J D, et al. Epigenetic activation of the FLT3 gene by ZNF384 fusion confers a therapeutic susceptibility in acute lymphoblastic leukemia[J]. Nat Commun, 2022, 13(1): 5401. |
67 | GRIFFITH M, GRIFFITH O L, KRYSIAK K, et al. Comprehensive genomic analysis reveals FLT3 activation and a therapeutic strategy for a patient with relapsed adult B-lymphoblastic leukemia[J]. Exp Hematol, 2016, 44(7): 603-613. |
68 | UNIPROT CONSORTIUM. UniProt: the universal protein knowledgebase in 2021[J]. Nucleic Acids Res, 2021, 49(d1): D480-D489. |
[1] | 门如, 朱旻霞, 张伟明. 维持性血液透析患者血钾水平及其对预后影响[J]. 上海交通大学学报(医学版), 2023, 43(4): 507-513. |
[2] | 王安君, 刘宁宁. 放疗对行化疗和手术的直肠癌患者的效果分析:一项基于SEER数据库的回顾性研究[J]. 上海交通大学学报(医学版), 2023, 43(3): 320-332. |
[3] | 李芳, 李凯杨, 王珏, 晏睿阳, 沈慧, 刘敏. PLA2G2A在肾乳头状细胞癌中的表达及临床意义[J]. 上海交通大学学报(医学版), 2023, 43(2): 152-161. |
[4] | 冯佳丽, 彭宇, 段君凯. 川崎病相关微RNA的功能机制及生物标志物研究进展[J]. 上海交通大学学报(医学版), 2023, 43(2): 256-260. |
[5] | 后书敏, 邵静波. TdT阴性的淋巴母细胞淋巴瘤/急性淋巴细胞白血病临床特点、诊断及预后研究进展[J]. 上海交通大学学报(医学版), 2023, 43(1): 120-124. |
[6] | 黄治物, 吴皓. 年龄相关性听力损失研究进展与临床干预策略[J]. 上海交通大学学报(医学版), 2022, 42(9): 1182-1187. |
[7] | 邱佳辉, 蔡谦谦, 杨彦, 程非池, 裘正军, 黄陈. 神经脉管浸润联合肿瘤间质比对结直肠癌预后的预测价值[J]. 上海交通大学学报(医学版), 2022, 42(8): 1070-1080. |
[8] | 沙攀, 赵雪雯, 朱浩天, 高崇洲, 刘珅. 肌腱粘连的机制及干预研究进展[J]. 上海交通大学学报(医学版), 2022, 42(8): 1116-1121. |
[9] | 卫雪敏, 高成金. ASPECT评分在急性缺血性脑卒中临床应用中的研究进展[J]. 上海交通大学学报(医学版), 2022, 42(7): 919-924. |
[10] | 张琳程, 钟华. 结节病的发病机制与临床治疗研究进展[J]. 上海交通大学学报(医学版), 2022, 42(7): 931-938. |
[11] | 王杨, 程佳月, 王振. 经颅直流电刺激作用机制的研究进展[J]. 上海交通大学学报(医学版), 2022, 42(7): 952-957. |
[12] | 何冬梅, 杨驰. 下颌骨髁突骨折的诊治方案:基于上海交通大学医学院附属第九人民医院颞下颌关节中心的经验[J]. 上海交通大学学报(医学版), 2022, 42(6): 695-701. |
[13] | 何冬梅, 杨驰. 颞下颌关节强直的诊治方案:基于上海交通大学医学院附属第九人民医院颞下颌关节中心的经验[J]. 上海交通大学学报(医学版), 2022, 42(6): 702-708. |
[14] | 张善勇, 杨驰. 颞下颌关节骨关节炎的诊治方案:基于上海交通大学医学院附属第九人民医院颞下颌关节中心的经验[J]. 上海交通大学学报(医学版), 2022, 42(6): 709-716. |
[15] | 董亚兵, 郝昀博, 张文豪, 王轶雯, 陈敏洁. 下颌第三磨牙拔除术后下牙槽神经损伤的功能检测及预后分析[J]. 上海交通大学学报(医学版), 2022, 42(6): 717-722. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||