1 |
HUYNH K. Heart failure: improvement of LVEF in patients with HF is linked to better prognosis[J]. Nat Rev Cardiol, 2016, 13(9): 505.
|
2 |
LEWEY J, LEVINE L D, ELOVITZ M A, et al. Importance of early diagnosis in peripartum cardiomyopathy[J]. Hypertension, 2020, 75(1): 91-97.
|
3 |
Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging[J]. J Am Soc Echocardiogr, 2015, 28(1): 1-39.e14.
|
4 |
OMMEN S R, MITAL S, BURKE M A, et al. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: executive summary: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines[J]. Circulation, 2020, 142(25): e533-e557.
|
5 |
LAVIE C J, HARMON K G. Routine ECG screening of young athletes[J]. J Am Coll Cardiol, 2016, 68(7): 712-714.
|
6 |
SHIGA T, WAJIMA Z, INOUE T, et al. Survey of observer variation in transesophageal echocardiography: comparison of anesthesiology and cardiology literature[J]. J Cardiothorac Vasc Anesth, 2003, 17(4): 430-442.
|
7 |
IBANEZ B, ALETRAS A H, ARAI A E, et al. Cardiac MRI endpoints in myocardial infarction experimental and clinical trials[J]. J Am Coll Cardiol, 2019, 74(2): 238-256.
|
8 |
KWAN A C, POURMORTEZA A, STUTMAN D, et al. Next-generation hardware advances in CT: cardiac applications[J]. Radiology, 2021, 298(1): 3-17.
|
9 |
YU X, YAO X X, WU B F, et al. Using deep learning method to identify left ventricular hypertrophy on echocardiography[J].Int J Cardiovasc Imaging, 2022, 38(4): 759-769.
|
10 |
SALIBA L J, MAFFETT S. Hypertensive heart disease and obesity: a review[J]. Heart Fail Clin, 2019, 15(4): 509-517.
|
11 |
GEORGIOPOULOS G, FIGLIOZZI S, PATERAS K, et al. Comparison of demographic, clinical, biochemical, and imaging findings in hypertrophic cardiomyopathy prognosis: a network meta-analysis[J]. JACC Heart Fail, 2023, 11(1): 30-41.
|
12 |
FUNADA A, KANZAKI H, NOGUCHI T, et al. Prognostic significance of late gadolinium enhancement quantification in cardiac magnetic resonance imaging of hypertrophic cardiomyopathy with systolic dysfunction[J]. Heart Vessels, 2016, 31(5): 758-770.
|
13 |
LYU Q, SHAN H M, XIE Y B, et al. Cine cardiac MRI motion artifact reduction using a recurrent neural network[J]. IEEE Trans Med Imaging, 2021, 40(8): 2170-2181.
|
14 |
LARKMAN D J, HERLIHY A H, COUTTS G A, et al. Elimination of magnetic field foldover artifacts in MR images[J]. J Magn Reson Imaging, 2000, 12(5): 795-797.
|
15 |
RAJIAH P, KAY F, BOLEN M, et al. Cardiac magnetic resonance in patients with cardiac implantable electronic devices: challenges and solutions[J]. J Thorac Imaging, 2020, 35(1): W1-W17.
|
16 |
FERREIRA P F, GATEHOUSE P D, MOHIADDIN R H, et al. Cardiovascular magnetic resonance artefacts[J]. J Cardiovasc Magn Reson, 2013, 15(1): 41.
|
17 |
GILLIES R J, KINAHAN P E, HRICAK H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577.
|
18 |
LAMBIN P, LEIJENAAR R T H, DEIST T M, et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14(12): 749-762.
|
19 |
KELLER H, WANGER K C, GOEPFRICH M, et al. Morphological quantification and differentiation of left ventricular hypertrophy in hypertrophic cardiomyopathy and hypertensive heart disease. A two dimensional echocardiographic study[J]. Eur Heart J, 1990, 11(1): 65-74.
|
20 |
ZWANENBURG A, VALLIÈRES M, ABDALAH M A, et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping[J]. Radiology, 2020, 295(2): 328-338.
|
21 |
VAN GRIETHUYSEN J J M, FEDOROV A, PARMAR C, et al. Computational radiomics system to decode the radiographic phenotype[J]. Cancer Res, 2017, 77(21): e104-e107.
|
22 |
PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn: machine learning in python[EB/OL]. (2018-06-05) [2023-03-23]. https://arxiv.org/abs/1201.0490.
|
23 |
BUSTIN A, FUIN N, BOTNAR R M, et al. From compressed-sensing to artificial intelligence-based cardiac MRI reconstruction[J]. Front Cardiovasc Med, 2020, 7: 17.
|
24 |
VARRIANO G, GUERRIERO P, SANTONE A, et al. Explainability of radiomics through formal methods[J]. Comput Methods Programs Biomed, 2022, 220: 106824.
|
25 |
FAHMY A S, ROWIN E J, ARAFATI A, et al. Radiomics and deep learning for myocardial scar screening in hypertrophic cardiomyopathy[J]. J Cardiovasc Magn Reson, 2022, 24(1): 40.
|
26 |
RAISI-ESTABRAGH Z, JAGGI A, GKONTRA P, et al. Cardiac magnetic resonance radiomics reveal differential impact of sex, age, and vascular risk factors on cardiac structure and myocardial tissue[J]. Front Cardiovasc Med, 2021, 8: 763361.
|
27 |
WANG S, PATEL H, MILLER T, et al. AI based CMR assessment of biventricular function[J]. JACC Cardiovasc Imaging, 2022, 15(3): 413-427.
|
28 |
ZHENG X Y, YAO Z, HUANG Y N, et al. Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer[J]. Nat Commun, 2020, 11(1): 1236.
|
29 |
BERNARD O, LALANDE A, ZOTTI C, et al. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved?[J]. IEEE Trans Med Imaging, 2018, 37(11): 2514-2525.
|
30 |
CAMPELLO V M, MARTÍN-ISLA C, IZQUIERDO C, et al. Minimising multi-centre radiomics variability through image normalisation: a pilot study[J]. Sci Rep, 2022, 12(1): 12532.
|
31 |
PIANTADOSI G, SANSONE M, FUSCO R, et al. Multi-planar 3D breast segmentation in MRI via deep convolutional neural networks[J]. Artif Intell Med, 2020, 103: 101781.
|