上海交通大学学报(医学版) ›› 2023, Vol. 43 ›› Issue (9): 1162-1168.doi: 10.3969/j.issn.1674-8115.2023.09.010

• 论著 · 临床研究 • 上一篇    

基于影像组学特征预测左室射血分数的可行性研究

刘启明(), 卢启帆, 柴烨子, 姜萌(), 卜军()   

  1. 上海交通大学医学院附属仁济医院心内科,上海 200127
  • 收稿日期:2023-03-23 接受日期:2023-08-04 出版日期:2023-09-28 发布日期:2023-09-28
  • 通讯作者: 姜萌,卜军 E-mail:090503liu@sjtu.edu.cn;jiangmeng0919@163.com;pujun310@hotmail.com
  • 作者简介:刘启明(1996—),男,硕士生;电子信箱:090503liu@sjtu.edu.cn
  • 基金资助:
    国家自然科学基金(81971570);上海申康医院发展中心促进市级医院临床技能与临床创新能力三年行动计划项目(SHDC2020CR2025B);上海市科学技术委员会医学创新研究专项(20Y11910500);上海市科学技术委员会优秀技术带头人计划(21XD143210);上海交通大学医学院“双百人”项目(20172014);上海市浦东新区卫生和计划生育委员会联合攻关项目(PW2018D-03);上海交通大学“交大之星”计划医工交叉研究基金(YG2019ZDA13);上海理工大学医工交叉研究基金(10-20-302-425)

Radiomics-based left ventricular ejection fraction prediction: a feasibility study

LIU Qiming(), LU Qifan, CHAI Yezi, JIANG Meng(), PU Jun()   

  1. Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
  • Received:2023-03-23 Accepted:2023-08-04 Online:2023-09-28 Published:2023-09-28
  • Contact: JIANG Meng,PU Jun E-mail:090503liu@sjtu.edu.cn;jiangmeng0919@163.com;pujun310@hotmail.com
  • Supported by:
    National Natural Science Foundation of China(81971570);Shanghai Shenkang Hospital Development Center Three-year Action Plan: Promoting Clinical Skills and Innovation in Municipal Hospital(SHDC2020CR2025B);Innovation Research Project of Shanghai Science and Technology Commission(20Y11910500);Advanced Technology Leader of the Shanghai Science and Technology Commission(21XD143210);“Two-hundred Talents” Program of Shanghai Jiao Tong University School of Medicine(20172014);Shanghai Pudong Municipal Health Commission-Joint Research Project(PW2018D-03);Medical-Engineering Cross Research of Shanghai Jiao Tong University(YG2019ZDA13);Medical-Engineering Cross Research of University of Shanghai for Science and Technology(10-20-302-425)

摘要:

目的·评估使用心脏磁共振(cardiac magnetic resonance,CMR)短轴电影图像提取的3D影像组学特征用于预测左室射血分数(left ventricular ejection fraction,LVEF)这一方法的可行性。方法·纳入2018年1月至2021年12月期间就诊于上海交通大学医学院附属仁济医院心内科的左室肥厚(left ventricular hypertrophy,LVH)患者共100例,及同时期健康对照(health control,HC)受试者100例,在心内科医师及放射科医师共同监督下完成CMR检查。随后由心内科医师手动勾画心内膜及心外膜并完成对入组人员心功能及形态学的测量与记录,主要包括LVEF、左心室舒张末期容积(left ventricular end-diastolic volume,LVEDV)、左心室舒张末期心肌质量(left ventricular end-diastolic mass,LVEDM)。通过Pyradiomics包提取CMR-cine序列心肌3D影像组学特征并使用相关系数与K-best方法进行特征筛选与排序。构建线性回归(linear regression,LR)、随机森林(random forest,RF)及梯度增强(gradient boost,Gb)3种机器学习回归模型,使用影像组学特征对LVEF进行预测,并与基于临床信息及CMR参数的LVEF预测结果进行比较。结果·在临床指标方面,LVH组与HC组之间LVEDV、LVEDM差异均有统计学意义(P<0.05)。通过提取心肌3D影像组学特征,获得10项特征并用于测试集样本LVEF预测。当所选特征为7项时,RF回归模型获得最佳表现,平均绝对误差(mean absolute error,MAE)为0.066±0.002,显著低于其他2种方法(P<0.001);对于RF回归模型,基于临床信息与舒张末期CMR参数的LVEF预测结果显示,结合影像组学信息与CMR参数的模型(MAE=0.056±0.001)效果最佳,并显著优于单用影像组学(MAE=0.066±0.002)或单用CMR参数(MAE=0.060±0.001)的模型表现(P<0.05)。结论·影像组学特征用于LVEF预测具有一定的可行性,并且将影像组学信息与CMR参数结合,可以进一步提升模型预测准确率。

关键词: 心脏磁共振, 影像组学, 左室肥厚, 电影序列

Abstract:

Objective ·To assess the feasibility of using 3D imaging features extracted from cardiac magnetic resonance (CMR) short-axis cine images to predict left ventricular ejection fraction (LVEF). Methods ·A total of 100 left ventricular hypertrophy (LVH) patients who visited the Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine from January 2018 to December 2021, as well as 100 healthy control (HC) subjects during the same period, were included. All subjects completed CMR examinations under the supervision of experienced cardiologists and radiologists. The endocardial and epicardial contours were then manually delineated by cardiologists. Measurements of cardiac function and morphology were completed and data was recorded, including LVEF, left ventricular end-diastolic volume (LVEDV), and left ventricular end-diastolic mass (LVEDM). Myocardial 3D radiomic features of CMR-cine sequences were extracted by the Pyradiomics package, and selected and sorted by using correlation coefficient and K-best method. The LVEF prediction was performed with linear regression (LR), random forest (RF) and gradient boost (GB) methods. Results were also compared with LVEF prediction based on clinical information and CMR parameters. Results ·In terms of clinical indicators, there were significant differences between the LVH and HC groups, such as LVEDV and LVEDM (all P<0.05); after extracting 3D radiomic features, the top 10 features were selected for further analysis. LR regression model, GB regression model and RF regression model were constructed for predicting the LVEF, and RF regression models showed the best results with seven features, in which the mean absolute error (MAE) was 0.066±0.002. Further comparison results showed that the model using radiomic information with CMR parameters (MAE=0.056±0.001) had the best performance and it was significantly better than the model using radiomic features (MAE=0.066±0.002) or CMR parameters (MAE=0.060±0.001) alone (both P<0.05). Conclusion ·The use of radiomic features for LVEF prediction has certain feasibility, and combining radiomic features with CMR parameters can further improve the prediction accuracy of the model.

Key words: cardiac magnetic resonance (CMR), radiomics, left ventricular hypertrophy, cine sequence

中图分类号: