1 |
SCANLAN M J, GURE A O, JUNGBLUTH A A, et al. Cancer/testis antigens: an expanding family of targets for cancer immunotherapy[J]. Immunol Rev, 2002, 188: 22-32.
|
2 |
PINEDA C T, RAMANATHAN S, FON TACER K, et al. Degradation of AMPK by a cancer-specific ubiquitin ligase[J]. Cell, 2015, 160(4): 715-728.
|
3 |
LI F, ZHAO F S, LI M, et al. Decreasing New York esophageal squamous cell carcinoma 1 expression inhibits multiple myeloma growth and osteolytic lesions[J]. J Cell Physiol, 2020, 235(3): 2183-2194.
|
4 |
GREVE K B, LINDGREEN J N, TERP M G, et al. Ectopic expression of cancer/testis antigen SSX2 induces DNA damage and promotes genomic instability[J]. Mol Oncol, 2015, 9(2): 437-449.
|
5 |
MIZUSHIMA E, TSUKAHARA T, EMORI M, et al. Osteosarcoma-initiating cells show high aerobic glycolysis and attenuation of oxidative phosphorylation mediated by LIN28B[J]. Cancer Sci, 2020, 111(1): 36-46.
|
6 |
ZENDMAN A J, CORNELISSEN I M, WEIDLE U H, et al. CTp11, a novel member of the family of human cancer/testis antigens[J]. Cancer Res, 1999, 59(24): 6223-6229.
|
7 |
HSIAO Y J, SU K Y, HSU Y C, et al. SPANXA suppresses EMT by inhibiting c-JUN/SNAI2 signaling in lung adenocarcinoma[J]. Oncotarget, 2016, 7(28): 44417-44429.
|
8 |
WANG X W, JU S H, CHEN Y, et al. Hypomethylation-activated cancer-testis gene SPANXC promotes cell metastasis in lung adenocarcinoma[J]. J Cell Mol Med, 2019, 23(11): 7261-7267.
|
9 |
ZHU F, BO H, LIU G M, et al. SPANXN2 functions a cell migration inhibitor in testicular germ cell tumor cells[J]. PeerJ, 2020, 8: e9358.
|
10 |
MAINE E A, WESTCOTT J M, PRECHTL A M, et al. The cancer-testis antigens SPANX-A/C/D and CTAG2 promote breast cancer invasion[J]. Oncotarget, 2016, 7(12): 14708-14726.
|
11 |
LAZAR I, FABRE B, FENG Y M, et al. SPANX control of lamin A/C modulates nuclear architecture and promotes melanoma growth[J]. Mol Cancer Res, 2020, 18(10): 1560-1573.
|
12 |
ALMANZAR G, OLKHANUD P B, BODOGAI M, et al. Sperm-derived SPANX-B is a clinically relevant tumor antigen that is expressed in human tumors and readily recognized by human CD4+ and CD8+ T cells[J]. Clin Cancer Res, 2009, 15(6): 1954-1963.
|
13 |
PETRICK J L, FLORIO A A, ZNAOR A, et al. International trends in hepatocellular carcinoma incidence, 1978-2012[J]. Int J Cancer, 2020, 147(2): 317-330.
|
14 |
FRACANZANI A L, CONTE D, FRAQUELLI M, et al. Increased cancer risk in a cohort of 230 patients with hereditary hemochromatosis in comparison to matched control patients with non-iron-related chronic liver disease[J]. Hepatology, 2001, 33(3): 647-651.
|
15 |
LLOVET J M, KELLEY R K, VILLANUEVA A, et al. Hepatocellular carcinoma[J]. Nat Rev Dis Primers, 2021, 7(1): 6.
|
16 |
ZUCMAN-ROSSI J, VILLANUEVA A, NAULT J C, et al. Genetic landscape and biomarkers of hepatocellular carcinoma[J]. Gastroenterology, 2015, 149(5): 1226-1239.e4.
|
17 |
CHIANG D Y, VILLANUEVA A, HOSHIDA Y, et al. Focal gains of VEGFA and molecular classification of hepatocellular carcinoma[J]. Cancer Res, 2008, 68(16): 6779-6788.
|
18 |
HÄNZELMANN S, CASTELO R, GUINNEY J. GSVA: gene set variation analysis for microarray and RNA-seq data[J]. BMC Bioinformatics, 2013, 14: 7.
|
19 |
RITCHIE M E, PHIPSON B, WU D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res, 2015, 43(7): e47.
|
20 |
WU T, HU E, XU S, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data[J]. Innovation (Camb), 2021, 2(3): 100141.
|
21 |
ZHANG X F, SMITS A H, VAN TILBURG G B, et al. Proteome-wide identification of ubiquitin interactions using UbIA-MS[J]. Nat Protoc, 2018, 13(3): 530-550.
|
22 |
DAS B, SENAPATI S. Immunological and functional aspects of MAGEA3 cancer/testis antigen[J]. Adv Protein Chem Struct Biol, 2021, 125: 121-147.
|
23 |
YUASA T, OKAMOTO K, KAWAKAMI T, et al. Expression patterns of cancer testis antigens in testicular germ cell tumors and adjacent testicular tissue[J]. J Urol, 2001, 165(5): 1790-1794.
|
24 |
HIROHASHI Y, TORIGOE T, TSUKAHARA T, et al. Immune responses to human cancer stem-like cells/cancer-initiating cells[J]. Cancer Sci, 2016, 107(1): 12-17.
|
25 |
HYMAN D M, TAYLOR B S, BASELGA J. Implementing genome-driven oncology[J]. Cell, 2017, 168(4): 584-599.
|
26 |
LIU S Z, MIAO M S, KANG L. Upregulation of MAD2L1 mediated by ncRNA axis is associated with poor prognosis and tumor immune infiltration in hepatocellular carcinoma: a review[J]. Medicine (Baltimore), 2023, 102(2): e32625.
|
27 |
LI Q, TONG D D, JING X T, et al. MAD2L1 is transcriptionally regulated by TEAD4 and promotes cell proliferation and migration in colorectal cancer[J]. Cancer Gene Ther, 2023, 30(5): 727-737.
|
28 |
JIANG W J, YANG X, SHI K H, et al. MAD2 activates IGF1R/PI3K/AKT pathway and promotes cholangiocarcinoma progression by interfering USP44/LIMA1 complex[J]. Oncogene, 2023, 42(45): 3344-3357.
|
29 |
WANG L, GUO B, WANG R W, et al. Inhibition of cell growth and up-regulation of MAD2 in human oesophageal squamous cell carcinoma after treatment with the Src/Abl inhibitor dasatinib[J]. Clin Sci (Lond), 2012, 122(1): 13-24.
|
30 |
JIANG H. The complex activities of the SET1/MLL complex core subunits in development and disease[J]. Biochim Biophys Acta Gene Regul Mech, 2020, 1863(7): 194560.
|
31 |
CHEN X, XIE W B, GU P, et al. Upregulated WDR5 promotes proliferation, self-renewal and chemoresistance in bladder cancer via mediating H3K4 trimethylation[J]. Sci Rep, 2015, 5: 8293.
|
32 |
ZHANG J T, ZHOU Q H, XIE K J, et al. Targeting WD repeat domain 5 enhances chemosensitivity and inhibits proliferation and programmed death-ligand 1 expression in bladder cancer[J]. J Exp Clin Cancer Res, 2021, 40(1): 203.
|