1 |
Rees F, Doherty M, Grainge MJ, et al. The worldwide incidence and prevalence of systemic lupus erythematosus: a systematic review of epidemiological studies[J]. Rheumatology (Oxford), 2017, 56(11): 1945-1961.
|
2 |
Yu F, Haas M, Glassock R, et al. Redefining lupus nephritis: clinical implications of pathophysiologic subtypes[J]. Nat Rev Nephrol, 2017, 13(8): 483-495.
|
3 |
Almaani S, Meara A, Rovin BH. Update on lupus nephritis[J]. Clin J Am Soc Nephrol, 2017, 12(5): 825-835.
|
4 |
Tektonidou MG, Dasgupta A, Ward MM. Risk of end-stage renal disease in patients with lupus nephritis, 1971-2015: a systematic review and Bayesian meta-analysis[J]. Arthritis Rheumatol, 2016, 68(6): 1432-1441.
|
5 |
Devarapu SK, Lorenz G, Kulkarni OP, et al. Cellular and molecular mechanisms of autoimmunity and lupus nephritis[J]. Int Rev Cell Mol Biol, 2017, 332: 43-154.
|
6 |
Bing PF, Xia W, Wang L, et al. Common marker genes identified from various sample types for systemic lupus erythematosus[J]. PLoS One, 2016, 11(6): e0156234.
|
7 |
Coit P, Jeffries M, Altorok N, et al. Genome-wide DNA methylation study suggests epigenetic accessibility and transcriptional poising of interferon-regulated genes in naïve CD4+T cells from lupus patients[J]. J Autoimmun, 2013, 43: 78-84.
|
8 |
Clough E, Barrett T. The gene expression omnibus database[J]. Methods Mol Biol Clifton N J, 2016, 1418: 93-110.
|
9 |
Piao J, Sun J, Yang Y, et al. Target gene screening and evaluation of prognostic values in non-small cell lung cancers by bioinformatics analysis[J]. Gene, 2018, 647: 306-311.
|
10 |
Gene Ontology Consortium. Gene Ontology Consortium: going forward[J]. Nucleic Acids Res, 2015, 43(database issue): D1049-D1056.
|
11 |
Du JL, Yuan ZF, Ma ZW, et al. KEGG-PATH: Kyoto encyclopedia of genes and genomes-based pathway analysis using a path analysis model [J]. Mol Biosyst, 2014, 10(9): 2441-2447.
|
12 |
Dennis G, JR., Sherman BT, Hosack DA, et al. DAVID: Database for annotation, visualization, and integrated discovery[J]. Genome Biol, 2003, 4(5): P3.
|
13 |
Kumar MS, Adki KM. Marine natural products for multi-targeted cancer treatment: a future insight[J]. Biomed Pharmacother, 2018, 105: 233-245.
|
14 |
Wang J, Zhong J, Chen G, et al. ClusterViz: a cytoscape APP for cluster analysis of biological network[J]. IEEE/ACM Trans Comput Biol Bioinform, 2015, 12(4): 815-822.
|
15 |
Chin CH, Chen SH, Wu HH, et al. cytoHubba: identifying hub objects and sub-networks from complex interactome[J]. BMC Syst Biol, 2014, 8(): S11.
|
16 |
Yang H, Li H. CD36 identified by weighted gene co-expression network analysis as a hub candidate gene in lupus nephritis[J]. PeerJ, 2019, 7: e7722.
|
17 |
Shu B, Fang Y, He W, et al. Identification of macrophage-related candidate genes in lupus nephritis using bioinformatics analysis[J]. Cell Signal, 2018, 46: 43-51.
|
18 |
Reder AT, Feng X. Aberrant type I interferon regulation in autoimmunity: opposite directions in MS and SLE, shaped by evolution and body ecology[J]. Front Immunol, 2013, 4: 281.
|
19 |
Bezalel S, Guri KM, Elbirt D, et al. Type I interferon signature in systemic lupus erythematosus[J]. Isr Med Assoc J, 2014, 16(4): 246-249.
|
20 |
Chen JY, Wang CM, Chen TD, et al. Interferon-λ3/4 genetic variants and interferon-λ3 serum levels are biomarkers of lupus nephritis and disease activity in Taiwanese [J]. Arthritis Res Ther, 2018, 20(1): 193.
|
21 |
Becker AM, Dao KH, Han BK, et al. SLE peripheral blood B cell, T cell and myeloid cell transcriptomes display unique profiles and each subset contributes to the interferon signature[J]. PLoS One, 2013, 8(6): e67003.
|
22 |
Reynaud JM, Kim DY, Atasheva S, et al. IFIT1 differentially interferes with translation and replication of alphavirus genomes and promotes induction of type I interferon[J]. PLoS Pathog, 2015, 11(4): e1004863.
|
23 |
Zhang L, Wang B, Li L, et al. Antiviral effects of IFIT1 in human cytomegalovirus-infected fetal astrocytes[J]. J Med Virol, 2017, 89(4): 672-684.
|