上海交通大学学报(医学版) ›› 2021, Vol. 41 ›› Issue (9): 1240-1245.doi: 10.3969/j.issn.1674-8115.2021.09.016
• 综述 • 上一篇
收稿日期:
2020-11-24
出版日期:
2021-08-24
发布日期:
2021-08-24
通讯作者:
刘海芸
E-mail:shuyiyang@sjtu.edu.cn;drliuhaiyun@126.com
作者简介:
舒毅扬(1996—),女,硕士生;电子信箱:shuyiyang@sjtu.edu.cn。
基金资助:
Yi-yang SHU(), Si-qi ZHANG, Hai-yun LIU()
Received:
2020-11-24
Online:
2021-08-24
Published:
2021-08-24
Contact:
Hai-yun LIU
E-mail:shuyiyang@sjtu.edu.cn;drliuhaiyun@126.com
Supported by:
摘要:
随着年龄相关性黄斑变性(age-related macular degeneration,AMD)发病人数的增多,筛选出具有指示价值的影像学标志并应用于AMD的初步筛查、疾病预警、复发提醒、治疗指导,将有助于AMD患者的早期诊断和精准治疗。临床上,大多采用眼底彩照、光学相干断层扫描(optical coherence tomography,OCT)、光学相干断层扫描血管成像(optical coherence tomography angiography,OCTA)和眼底血管造影等进行图像的识别分析。该文综述了识别和预测早、中、晚期AMD进展与预测AMD复发和预后的影像学标志,旨在为临床判断提供理论依据和治疗指导。
中图分类号:
舒毅扬, 张思齐, 刘海芸. 识别和预测年龄相关性黄斑变性进展的影像学标志的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(9): 1240-1245.
Yi-yang SHU, Si-qi ZHANG, Hai-yun LIU. Research progress of imaging markers for identifying and predicting the progression of age-related macular degeneration[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(9): 1240-1245.
1 | Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis[J]. Lancet Glob Health, 2014, 2(2): e106-e116. |
2 | Flaxel CJ, Adelman RA, Bailey ST, et al. Age-related macular degeneration preferred practice pattern®[J]. Ophthalmology, 2020, 127(1): P1-P65. |
3 | Murray IJ, Makridaki M, van der Veen RL, et al. Lutein supplementation over a one-year period in early AMD might have a mild beneficial effect on visual acuity: the CLEAR study[J]. Invest Ophthalmol Vis Sci, 2013, 54(3): 1781-1788. |
4 | 王诗惠, 戴乐舒, 宋剑涛. 年龄相关性黄斑变性玻璃膜疣的研究概况[J]. 国际眼科纵览, 2018, 42(3): 145-148. |
5 | Abdelfattah NS, Zhang HY, Boyer DS, et al. Drusen volume as a predictor of disease progression in patients with late age-related macular degeneration in the fellow eye[J]. Invest Ophthalmol Vis Sci, 2016, 57(4): 1839-1846. |
6 | Folgar FA, Yuan EL, Sevilla MB, et al. Drusen volume and retinal pigment epithelium abnormal thinning volume predict 2-year progression of age-related macular degeneration[J]. Ophthalmology, 2016, 123(1): 39-50.e1. |
7 | de Sisternes L, Simon N, Tibshirani R, et al. Quantitative SD-OCT imaging biomarkers as indicators of age-related macular degeneration progression[J]. Invest Ophthalmol Vis Sci, 2014, 55(11): 7093-7103. |
8 | Schlanitz FG, Baumann B, Kundi M, et al. Drusen volume development over time and its relevance to the course of age-related macular degeneration[J]. Br J Ophthalmol, 2017, 101(2): 198-203. |
9 | Bogunovic H, Montuoro A, Baratsits M, et al. Machine learning of the progression of intermediate age-related macular degeneration based on OCT imaging[J]. Invest Ophthalmol Vis Sci, 2017, 58(6): BIO141-BIO150. |
10 | Veerappan M, El-Hage-Sleiman AM, Tai V, et al. Optical coherence tomography reflective drusen substructures predict progression to geographic atrophy in age-related macular degeneration[J]. Ophthalmology, 2016, 123(12): 2554-2570. |
11 | Ouyang Y, Heussen FM, Hariri A, et al. Optical coherence tomography-based observation of the natural history of drusenoid lesion in eyes with dry age-related macular degeneration[J]. Ophthalmology, 2013, 120(12): 2656-2665. |
12 | Lei JQ, Balasubramanian S, Abdelfattah NS, et al. Proposal of a simple optical coherence tomography-based scoring system for progression of age-related macular degeneration[J]. Graefes Arch Clin Exp Ophthalmol, 2017, 255(8): 1551-1558. |
13 | Christenbury JG, Folgar FA, O′Connell RV, et al. Progression of intermediate age-related macular degeneration with proliferation and inner retinal migration of hyperreflective foci[J]. Ophthalmology, 2013, 120(5): 1038-1045. |
14 | Sleiman K, Veerappan M, Winter KP, et al. Optical coherence tomography predictors of risk for progression to non-neovascular atrophic age-related macular degeneration[J]. Ophthalmology, 2017, 124(12): 1764-1777. |
15 | Nassisi M, Fan WY, Shi Y, et al. Quantity of intraretinal hyperreflective foci in patients with intermediate age-related macular degeneration correlates with 1-year progression[J]. Invest Ophthalmol Vis Sci, 2018, 59(8): 3431-3439. |
16 | Schmidt-Erfurth U, Waldstein SM, Klimscha S, et al. Prediction of individual disease conversion in early AMD using artificial intelligence[J]. Invest Ophthalmol Vis Sci, 2018, 59(8): 3199-3208. |
17 | Fragiotta S, Rossi T, Cutini A, et al. Predictive factors for development of neovascular age-related macular degeneration: a spectral-domain optical coherence tomography study[J]. Retina, 2018, 38(2): 245-252. |
18 | Arnold JJ, Sarks SH, Killingsworth MC, et al. Reticular pseudodrusen. A risk factor in age-related maculopathy[J]. Retina, 1995, 15(3): 183-191. |
19 | Zweifel SA, Imamura Y, Spaide TC, et al. Prevalence and significance of subretinal drusenoid deposits (reticular pseudodrusen) in age-related macular degeneration[J]. Ophthalmology, 2010, 117(9): 1775-1781. |
20 | Finger RP, Wu Z, Luu CD, et al. Reticular pseudodrusen: a risk factor for geographic atrophy in fellow eyes of individuals with unilateral choroidal neovascularization[J]. Ophthalmology, 2014, 121(6): 1252-1256. |
21 | Finger RP, Chong E, McGuinness MB, et al. Reticular pseudodrusen and their association with age-related macular degeneration: the Melbourne collaborative cohort study[J]. Ophthalmology, 2016, 123(3): 599-608. |
22 | Zhou Q, Daniel E, Maguire MG, et al. Pseudodrusen and incidence of late age-related macular degeneration in fellow eyes in the comparison of age-related macular degeneration treatments trials[J]. Ophthalmology, 2016, 123(7): 1530-1540. |
23 | Farsiu S, Chiu SJ, O′Connell RV, et al. Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography[J]. Ophthalmology, 2014, 121(1): 162-172. |
24 | Marsiglia M, Boddu S, Bearelly S, et al. Association between geographic atrophy progression and reticular pseudodrusen in eyes with dry age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2013, 54(12): 7362-7369. |
25 | Niu SJ, de Sisternes L, Chen Q, et al. Fully automated prediction of geographic atrophy growth using quantitative spectral-domain optical coherence tomography biomarkers[J]. Ophthalmology, 2016, 123(8): 1737-1750. |
26 | Freund KB, Zweifel SA, Engelbert M. Do we need a new classification for choroidal neovascularization in age-related macular degeneration?[J]. Retina, 2010, 30(9): 1333-1349. |
27 | Iafe NA, Phasukkijwatana N, Sarraf D. Optical coherence tomography angiography of type 1 neovascularization in age-related macular degeneration[J]. Dev Ophthalmol, 2016, 56: 45-51. |
28 | Kuehlewein L, Bansal M, Lenis TL, et al. Optical coherence tomography angiography of type 1 neovascularization in age-related macular degeneration[J]. Am J Ophthalmol, 2015, 160(4): 739-748.e2. |
29 | El Ameen A, Cohen SY, Semoun O, et al. Type 2 neovascularization secondary to age-related macular degeneration imaged by optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2212-2218. |
30 | Farecki ML, Gutfleisch M, Faatz H, et al. Characteristics of type 1 and 2 CNV in exudative AMD in OCT-angiography[J]. Graefes Arch Clin Exp Ophthalmol, 2017, 255(5): 913-921. |
31 | Nagiel A, Sarraf D, Sadda SR, et al. Type 3 neovascularization: evolution, association with pigment epithelial detachment, and treatment response as revealed by spectral domain optical coherence tomography[J]. Retina, 2015, 35(4): 638-647. |
32 | Spaide RF, Jaffe GJ, Sarraf D, et al. Consensus nomenclature for reporting neovascular age-related macular degeneration data: consensus on neovascular age-related macular degeneration nomenclature study group[J]. Ophthalmology, 2020, 127(5): 616-636. |
33 | De Salvo G, Vaz-Pereira S, Keane PA, et al. Sensitivity and specificity of spectral-domain optical coherence tomography in detecting idiopathic polypoidal choroidal vasculopathy[J]. Am J Ophthalmol, 2014, 158(6): 1228-1238.e1. |
34 | Liu R, Li JQ, Li ZJ, et al. Distinguishing polypoidal choroidal vasculopathy from typical neovascular age-related macular degeneration based on spectral domain optical coherence tomography[J]. Retina, 2016, 36(4): 778-786. |
35 | Daniel E, Toth CA, Grunwald JE, et al. Risk of scar in the comparison of age-related macular degeneration treatments trials[J]. Ophthalmology, 2014, 121(3): 656-666. |
36 | Willoughby AS, Ying GS, Toth CA, et al. Subretinal hyperreflective material in the comparison of age-related macular degeneration treatments trials[J]. Ophthalmology, 2015, 122(9): 1846-1853.e5. |
37 | Casalino G, Stevenson MR, Bandello F, et al. Tomographic biomarkers predicting progression to fibrosis in treated neovascular age-related macular degeneration: a multimodal imaging study[J]. Ophthalmol Retina, 2018, 2(5): 451-461. |
38 | Coscas GJ, Lupidi M, Coscas F, et al. Optical coherence tomography angiography versus traditional multimodal imaging in assessing the activity of exudative age-related macular degeneration: a new diagnostic challenge[J]. Retina, 2015, 35(11): 2219-2228. |
39 | Schmidt-Erfurth U, Waldstein SM, Deak GG, et al. Pigment epithelial detachment followed by retinal cystoid degeneration leads to vision loss in treatment of neovascular age-related macular degeneration[J]. Ophthalmology, 2015, 122(4): 822-832. |
40 | von der Burchard C, Treumer F, Ehlken C, et al. Retinal volume change is a reliable OCT biomarker for disease activity in neovascular AMD[J]. Graefes Arch Clin Exp Ophthalmol, 2018, 256(9): 1623-1629. |
41 | Forte R, Coscas F, Serra R, et al. Long-term follow-up of quiescent choroidal neovascularisation associated with age-related macular degeneration or pachychoroid disease[J]. Br J Ophthalmol, 2020, 104(8): 1057-1063. |
42 | Al-Sheikh M, Iafe NA, Phasukkijwatana N, et al. Biomarkers of neovascular activity in age-related macular degeneration using optical coherence tomography angiography[J]. Retina, 2018, 38(2): 220-230. |
43 | Bae K, Kim HJ, Shin YK, et al. Predictors of neovascular activity during neovascular age-related macular degeneration treatment based on optical coherence tomography angiography[J]. Sci Rep, 2019, 9(1): 19240. |
44 | Comparison of Age-related Macular Degeneration Treatments Trials (CATT) Research Group. Ranibizumab and bevacizumab for treatment of neovascular age-related macular degeneration: two-year results[J]. Ophthalmology, 2020, 127(4S): S135-S145. |
45 | Waldstein SM, Wright J, Warburton J, et al. Predictive value of retinal morphology for visual acuity outcomes of different ranibizumab treatment regimens for neovascular AMD[J]. Ophthalmology, 2016, 123(1): 60-69. |
46 | Cuilla TA, Ying GS, Maguire MG, et al. Influence of the vitreomacular interface on treatment outcomes in the comparison of age-related macular degeneration treatments trials[J]. Ophthalmology, 2015, 122(6): 1203-1211. |
47 | Ashraf M, Souka A, Adelman RA. Age-related macular degeneration: using morphological predictors to modify current treatment protocols[J]. Acta Ophthalmol, 2018, 96(2): 120-133. |
48 | Kang HM, Kwon HJ, Yi JH, et al. Subfoveal choroidal thickness as a potential predictor of visual outcome and treatment response after intravitreal ranibizumab injections for typical exudative age-related macular degeneration[J]. Am J Ophthalmol, 2014, 157(5): 1013-1021. |
49 | Midena E, Vujosevic S, Convento E, et al. Microperimetry and fundus autofluorescence in patients with early age-related macular degeneration[J]. Br J Ophthalmol, 2007, 91(11): 1499-1503. |
50 | Paques M, Meimon S, Rossant F, et al. Adaptive optics ophthalmoscopy: application to age-related macular degeneration and vascular diseases[J]. Prog Retin Eye Res, 2018, 66: 1-16. |
51 | Schlegl T, Waldstein SM, Bogunovic H, et al. Fully automated detection and quantification of macular fluid in OCT using deep learning[J]. Ophthalmology, 2018, 125(4): 549-558. |
52 | Saha S, Nassisi M, Wang M, et al. Automated detection and classification of early AMD biomarkers using deep learning[J]. Sci Rep, 2019, 9(1): 10990. |
[1] | 罗丽颖, 唐敏, 项潇琼, 傅扬. 恒定性外斜视视网膜微血流及厚度初步分析[J]. 上海交通大学学报(医学版), 2021, 41(8): 1068-1073. |
[2] | 陈功, 沈玺. OCT与OCTA在颈动脉狭窄导致的慢性眼缺血性疾病中的应用[J]. 上海交通大学学报(医学版), 2021, 41(8): 1109-1113. |
[3] | 王雅芳, 刘洋, 罗学廷. 抗VEGF治疗湿性年龄相关性黄斑变性的回顾与展望[J]. 上海交通大学学报(医学版), 2021, 41(4): 530-534. |
[4] | 王韩影, 蒋炎, 王晴仪, 石新, 牛田, 邢馨丹, 沈胤忱, 陈翀, 刘堃. 光学相干断层扫描血管成像技术观察糖尿病性视网膜病变及糖尿病性黄斑水肿患者视网膜血流变化[J]. 上海交通大学学报(医学版), 2021, 41(2): 166-172. |
[5] | 张 琼1,林仲静1,张士胜2,胡起维1,沈 玺1,徐建敏1. 光学相干断层扫描血管成像在抗血管内皮生长因子药物治疗湿性年龄相关性黄斑变性效果评价中的应用[J]. 上海交通大学学报(医学版), 2020, 40(08): 1091-1097. |
[6] | 陈钰虹 1*,项潇琼 1*,朱鸿 1, 2,孙涛 1,李宪辰 3,王泓 1. 光学相干断层扫描血管成像技术评估孔源性视网膜脱离患者行玻璃体切割联合气体或硅油填充术后的黄斑区血流变化[J]. 上海交通大学学报(医学版), 2019, 39(6): 605-. |
[7] | 项潇琼,罗丽颖,唐敏,傅扬. 光学相干断层扫描血管成像在屈光参差性弱视儿童中的应用[J]. 上海交通大学学报(医学版), 2019, 39(1): 79-. |
[8] | 阮熵,汪枫桦. 干细胞定向分化视网膜色素上皮治疗年龄相关性黄斑变性的研究进展[J]. 上海交通大学学报(医学版), 2018, 38(9): 1122-. |
[9] | 俞岚筑,沈玺. 光学相干断层扫描血管成像在眼部疾病诊断中的应用[J]. 上海交通大学学报(医学版), 2018, 38(7): 829-. |
[10] | 肖美春,王晓寒,汪枫桦 . 可溶性血管内皮生长因子受体-1在年龄相关性黄斑变性中的 作用和应用前景#br#[J]. 上海交通大学学报(医学版), 2017, 37(9): 1297-. |
[11] | 陈娜,闫焱,李祯,陆士恒 . 葡萄膜炎患者的荧光素眼底血管造影及光学相干断层扫描的特点分析[J]. 上海交通大学学报(医学版), 2017, 37(12): 1653-. |
[12] | 王晓寒,肖美春,王若诗,杨仕琪,李彤,周彦萍,汪枫桦,孙晓东 . 高度近视分类与玻璃体视网膜界面特征之间的关系[J]. 上海交通大学学报(医学版), 2017, 37(11): 1518-. |
[13] | 宋颖,张琳. 补体成分2基因上rs9332739与年龄相关性黄斑变性的相关性研究[J]. 上海交通大学学报(医学版), 2016, 36(03): 411-. |
[14] | 孙静芬,俞方知,周正申. OCT比较高眼压和原发性开角型青光眼的视网膜神经纤维层厚度[J]. 上海交通大学学报(医学版), 2013, 33(11): 1509-. |
[15] | 周正申, 孙静芬. 光学相干断层扫描在特发性黄斑前膜诊治中的应用价值[J]. , 2012, 32(6): 796-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||