上海交通大学学报(医学版) ›› 2023, Vol. 43 ›› Issue (12): 1577-1584.doi: 10.3969/j.issn.1674-8115.2023.12.014
• 综述 • 上一篇
收稿日期:
2023-06-01
接受日期:
2023-10-27
出版日期:
2023-12-28
发布日期:
2024-02-01
通讯作者:
徐迎春,张凤春
E-mail:bobbytang_1982@126.com;xiaoxu2384@163.com;fczhang2004@163.com
作者简介:
唐 雷(1982—),男,主治医师,博士;电子信箱:bobbytang_1982@126.com。
基金资助:
TANG Lei1(), XU Yingchun2(), ZHANG Fengchun1,3()
Received:
2023-06-01
Accepted:
2023-10-27
Online:
2023-12-28
Published:
2024-02-01
Contact:
XU Yingchun,ZHANG Fengchun
E-mail:bobbytang_1982@126.com;xiaoxu2384@163.com;fczhang2004@163.com
Supported by:
摘要:
胶原蛋白是人体含量最丰富的蛋白质之一,是细胞外基质的主要成分。胶原蛋白可以调节细胞行为,胶原蛋白表达失调可导致多种疾病,包括肿瘤。肿瘤中胶原蛋白主要由成纤维细胞产生,在肿瘤进展和转移中发挥重要作用。胶原蛋白作为肿瘤患者预后的预测因子,可能是有效治疗及预防肿瘤进展及转移的靶点,将来可能会研发出针对胶原蛋白及其受体的抗肿瘤药物。该文综述近年来新发现的胶原蛋白在肿瘤发生和发展中的作用,特别是胶原蛋白在维持肿瘤细胞休眠状态和免疫逃逸中的作用,以及胶原蛋白如何参与肿瘤细胞代谢。
中图分类号:
唐雷, 徐迎春, 张凤春. 胶原蛋白在肿瘤发生和发展中的作用综述[J]. 上海交通大学学报(医学版), 2023, 43(12): 1577-1584.
TANG Lei, XU Yingchun, ZHANG Fengchun. Review of the role of collagen in tumorigenesis and development[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(12): 1577-1584.
Receptor | Cell type | Collagen type |
---|---|---|
Integrin α1β1 | Mesenchymal cells, inflammatory cells (T lymphocytes), epithelial cells, platelets | Collagen Ⅳ and Ⅵ, fibril-forming collagens |
Integrin α2β1 | Mesenchymal cells, epithelial cells, platelets | Fibril-forming collagens |
Integrin α10β1 | Chondrocytes | Collagen Ⅳ and Ⅵ |
Integrin α11β1 | Mesenchymal cells | Fibril-forming collagens and collagen Ⅹ |
DDR1 | Epithelial cells | Fibril-forming collagens (Collagen Ⅰ, Ⅱ, Ⅲ), Collagen Ⅳ and Ⅷ |
DDR2 | Mesenchymal cells | Fibril-forming collagens and collagen Ⅹ |
GPVI | Platelets | Fibril-forming collagens |
LAIR-1, LAIR-2 | Leukocytes | Collagen I, transmembrane collagens , ⅩⅦ, Ⅹ |
OSCAR | Vascular endothelial cells, osteoclast, macrophages | Fibril-forming collagens (Collagen Ⅰ, Ⅱ, Ⅲ) |
GPR56 | Platelets | Fibril-forming collagens (i.e., Collagen Ⅲ) |
Mannose receptor family (MR, PLA2R, DEC-205, Endo180) | Fibroblasts | Fibril-forming collagens and collagen Ⅳ |
表1 胶原蛋白相关受体名称、表达受体的细胞及与之结合的胶原蛋白亚型
Tab 1 Receptors of collagen, receptor-expressing cells, and types of collagens
Receptor | Cell type | Collagen type |
---|---|---|
Integrin α1β1 | Mesenchymal cells, inflammatory cells (T lymphocytes), epithelial cells, platelets | Collagen Ⅳ and Ⅵ, fibril-forming collagens |
Integrin α2β1 | Mesenchymal cells, epithelial cells, platelets | Fibril-forming collagens |
Integrin α10β1 | Chondrocytes | Collagen Ⅳ and Ⅵ |
Integrin α11β1 | Mesenchymal cells | Fibril-forming collagens and collagen Ⅹ |
DDR1 | Epithelial cells | Fibril-forming collagens (Collagen Ⅰ, Ⅱ, Ⅲ), Collagen Ⅳ and Ⅷ |
DDR2 | Mesenchymal cells | Fibril-forming collagens and collagen Ⅹ |
GPVI | Platelets | Fibril-forming collagens |
LAIR-1, LAIR-2 | Leukocytes | Collagen I, transmembrane collagens , ⅩⅦ, Ⅹ |
OSCAR | Vascular endothelial cells, osteoclast, macrophages | Fibril-forming collagens (Collagen Ⅰ, Ⅱ, Ⅲ) |
GPR56 | Platelets | Fibril-forming collagens (i.e., Collagen Ⅲ) |
Mannose receptor family (MR, PLA2R, DEC-205, Endo180) | Fibroblasts | Fibril-forming collagens and collagen Ⅳ |
1 | SU H, KARIN M. Collagen architecture and signaling orchestrate cancer development[J]. Trends Cancer, 2023, 9(9): 764-773. |
2 | SLATTER D A, BIHAN D G, FARNDALE R W. The effect of purity upon the triple-helical stability of collagenous peptides[J]. Biomaterials, 2011, 32(27): 6621-6632. |
3 | MILAZZO M, JUNG G S, DANTI S, et al. Wave propagation and energy dissipation in collagen molecules[J]. ACS Biomater Sci Eng, 2020, 6(3): 1367-1374. |
4 | SAKOWICZ-BURKIEWICZ M, KUCZKOWSKI J, PRZYBYŁA T, et al. Gene expression profile of collagen types, osteopontin in the tympanic membrane of patients with tympanosclerosis[J]. Adv Clin Exp Med, 2017, 26(6): 961-966. |
5 | RICARD-BLUM S. The collagen family[J]. Cold Spring Harb Perspect Biol, 2011, 3(1): a004978. |
6 | ZACHARIADOU C, HART T, HOOPER D, et al. Molecular characteristics of periodontal health: collagens: defining the healthy human gingival collagen transcriptome: defining the healthy human gingival collagen transcriptome[J]. J Periodontol, 2023, 94(5): 606-615. |
7 | MOUW J K, OU G, WEAVER V M. Extracellular matrix assembly: a multiscale deconstruction[J]. Nat Rev Mol Cell Biol, 2014, 15(12): 771-785. |
8 | LEITINGER B. Transmembrane collagen receptors[J]. Annu Rev Cell Dev Biol, 2011, 27: 265-290. |
9 | SHEN B, VARDY K, HUGHES P, et al. Integrin alpha11 is an osteolectin receptor and is required for the maintenance of adult skeletal bone mass[J]. Elife, 2019, 8: e42274. |
10 | LEITINGER B. Discoidin domain receptor functions in physiological and pathological conditions[J]. Int Rev Cell Mol Biol, 2014, 310: 39-87. |
11 | FUENTES E. Modulation of glycoprotein VI and its downstream signaling pathways as an antiplatelet target[J]. Int J Mol Sci, 2022, 23(17): 9882. |
12 | MEYAARD L. LAIR and collagens in immune regulation[J]. Immunol Lett, 2010, 128(1): 26-28. |
13 | NEDEVA I R, VITALE M, ELSON A, et al. Role of OSCAR signaling in osteoclastogenesis and bone disease[J]. Front Cell Dev Biol, 2021, 9: 641162. |
14 | YEUNG J, ADILI R, STRINGHAM E N, et al. GPR56/ADGRG1 is a platelet collagen-responsive GPCR and hemostatic sensor of shear force[J]. Proc Natl Acad Sci USA, 2020, 117(45): 28275-28286. |
15 | OLIVARES O, MAYERS J R, GOUIRAND V, et al. Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions[J]. Nat Commun, 2017, 8: 16031. |
16 | SOCOVICH A M, NABA A. The cancer matrisome: from comprehensive characterization to biomarker discovery[J]. Semin Cell Dev Biol, 2019, 89: 157-166. |
17 | YUZHALIN A E, URBONAS T, SILVA M A, et al. A core matrisome gene signature predicts cancer outcome[J]. Br J Cancer, 2018, 118(3): 435-440. |
18 | PIETILÄ E A, GONZALEZ-MOLINA J, MOYANO-GALCERAN L, et al. Co-evolution of matrisome and adaptive adhesion dynamics drives ovarian cancer chemoresistance[J]. Nat Commun, 2021, 12(1): 3904. |
19 | BIN LIM S, CHUA M L K, YEONG J P S, et al. Pan-cancer analysis connects tumor matrisome to immune response[J]. NPJ Precis Oncol, 2019, 3: 15. |
20 | BRODSKY A S, KHURANA J, GUO K S, et al. Somatic mutations in collagens are associated with a distinct tumor environment and overall survival in gastric cancer[J]. BMC Cancer, 2022, 22(1): 139. |
21 | IZZI V, DAVIS M N, NABA A. Pan-cancer analysis of the genomic alterations and mutations of the matrisome[J]. Cancers (Basel), 2020, 12(8): E2046. |
22 | WISHART A L, CONNER S J, GUARIN J R, et al. Decellularized extracellular matrix scaffolds identify full-length collagen VI as a driver of breast cancer cell invasion in obesity and metastasis[J]. Sci Adv, 2020, 6(43): eabc3175. |
23 | FATHERREE J P, GUARIN J R, MCGINN R A, et al. Chemotherapy-induced collagen IV drives cancer cell motility through activation of src and focal adhesion kinase[J]. Cancer Res, 2022, 82(10): 2031-2044. |
24 | TIAN C, CLAUSER K R, ÖHLUND D, et al. Proteomic analyses of ECM during pancreatic ductal adenocarcinoma progression reveal different contributions by tumor and stromal cells[J]. Proc Natl Acad Sci USA, 2019, 116(39): 19609-19618. |
25 | TIAN C, ÖHLUND D, RICKELT S, et al. Cancer cell-derived matrisome proteins promote metastasis in pancreatic ductal adenocarcinoma[J]. Cancer Res, 2020, 80(7): 1461-1474. |
26 | HEBERT J D, MYERS S A, NABA A, et al. Proteomic profiling of the ECM of xenograft breast cancer metastases in different organs reveals distinct metastatic niches[J]. Cancer Res, 2020, 80(7): 1475-1485. |
27 | NABA A, CLAUSER K R, LAMAR J M, et al. Extracellular matrix signatures of human mammary carcinoma identify novel metastasis promoters[J]. Elife, 2014, 3: e01308. |
28 | COPPOCK D L, KOPMAN C, SCANDALIS S, et al. Preferential gene expression in quiescent human lung fibroblasts[J]. Cell Growth Differ, 1993, 4(6): 483-493. |
29 | RISSON E, NOBRE A R, MAGUER-SATTA V, et al. The Current paradigm and challenges ahead for the dormancy of disseminated tumor cells[J]. Nat Cancer, 2020, 1(7): 672-680. |
30 | DI MARTINO J S, NOBRE A R, MONDAL C, et al. A tumor-derived type III collagen-rich ECM niche regulates tumor cell dormancy[J]. Nat Cancer, 2022, 3(1): 90-107. |
31 | BAGHDADI M B, CASTEL D, MACHADO L, et al. Reciprocal signalling by Notch-Collagen V-CALCR retains muscle stem cells in their niche[J]. Nature, 2018, 557(7707): 714-718. |
32 | JOHNSON J D, EDMAN J C, RUTTER W J. A receptor tyrosine kinase found in breast carcinoma cells has an extracellular discoidin I-like domain[J]. Proc Natl Acad Sci USA, 1993, 90(22): 10891. |
33 | DI MARCO E, CUTULI N, GUERRA L, et al. Molecular cloning of trkE, a novel trk-related putative tyrosine kinase receptor isolated from normal human keratinocytes and widely expressed by normal human tissues[J]. J Biol Chem, 1993, 268(32): 24290-24295. |
34 | VOGEL W, GISH G D, ALVES F, et al. The discoidin domain receptor tyrosine kinases are activated by collagen[J]. Mol Cell, 1997, 1(1): 13-23. |
35 | TAKAI K, DRAIN A P, LAWSON D A, et al. Discoidin domain receptor 1 (DDR1) ablation promotes tissue fibrosis and hypoxia to induce aggressive basal-like breast cancers[J]. Genes Dev, 2018, 32(3/4): 244-257. |
36 | SUN X, WU B, CHIANG H C, et al. Tumour DDR1 promotes collagen fibre alignment to instigate immune exclusion[J]. Nature, 2021, 599(7886): 673-678. |
37 | AMBROGIO C, GÓMEZ-LÓPEZ G, FALCONE M, et al. Combined inhibition of DDR1 and Notch signaling is a therapeutic strategy for KRAS-driven lung adenocarcinoma[J]. Nat Med, 2016, 22(3): 270-277. |
38 | GAO H, CHAKRABORTY G, ZHANG Z, et al. Multi-organ site metastatic reactivation mediated by non-canonical discoidin domain receptor 1 signaling[J]. Cell, 2016, 166(1): 47-62. |
39 | CHIUSA M, HU W, LIAO H J, et al. The extracellular matrix receptor discoidin domain receptor 1 regulates collagen transcription by translocating to the nucleus[J]. J Am Soc Nephrol, 2019, 30(9): 1605-1624. |
40 | FRIEDL P, ENTSCHLADEN F, CONRAD C, et al. CD4+ T lymphocytes migrating in three-dimensional collagen lattices lack focal adhesions and utilize beta1 integrin-independent strategies for polarization, interaction with collagen fibers and locomotion[J]. Eur J Immunol, 1998, 28(8): 2331-2343. |
41 | HARTMANN N, GIESE N A, GIESE T, et al. Prevailing role of contact guidance in intrastromal T-cell trapping in human pancreatic cancer[J]. Clin Cancer Res, 2014, 20(13): 3422-3433. |
42 | SALMON H, FRANCISZKIEWICZ K, DAMOTTE D, et al. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors[J]. J Clin Invest, 2012, 122(3): 899-910. |
43 | LARUE M M, PARKER S, PUCCINI J, et al. Metabolic reprogramming of tumor-associated macrophages by collagen turnover promotes fibrosis in pancreatic cancer[J]. Proc Natl Acad Sci USA, 2022, 119(16): e2119168119. |
44 | CHETOUI N, EL AZREQ M A, BOISVERT M, et al. Discoidin domain receptor 1 expression in activated T cells is regulated by the ERK MAP kinase signaling pathway[J]. J Cell Biochem, 2011, 112(12): 3666-3674. |
45 | DENG J, KANG Y, CHENG C C, et al. DDR1-induced neutrophil extracellular traps drive pancreatic cancer metastasis[J]. JCI Insight, 2021, 6(17): 146133. |
46 | ZHONG X, ZHANG W, SUN T. DDR1 promotes breast tumor growth by suppressing antitumor immunity[J]. Oncol Rep, 2019, 42(6): 2844-2854. |
47 | BERTONE A L. Principles of wound healing[J]. Vet Clin N Am Equine Pract, 1989, 5(3): 449-463. |
48 | FLIER J S, UNDERHILL L H, DVORAK H F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing[J]. N Engl J Med, 1986, 315(26): 1650-1659. |
49 | GANESH K, BASNET H, KAYGUSUZ Y, et al. L1CAM defines the regenerative origin of metastasis-initiating cells in colorectal cancer[J]. Nat Cancer, 2020, 1(1): 28-45. |
50 | PANKOVA D, CHEN Y, TERAJIMA M, et al. Cancer-associated fibroblasts induce a collagen cross-link switch in tumor stroma[J]. Mol Cancer Res, 2016, 14(3): 287-295. |
51 | MANEVA-RADICHEVA L, EBERT U, DIMOUDIS N, et al. Fibroblast remodeling of adsorbed collagen type IV is altered in contact with cancer cells[J]. Histol Histopathol, 2008, 23(7): 833-842. |
52 | FISCHER A, WANNEMACHER J, CHRIST S, et al. Neutrophils direct preexisting matrix to initiate repair in damaged tissues[J]. Nat Immunol, 2022, 23(4): 518-531. |
53 | ALBRENGUES J, SHIELDS M A, NG D, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice[J]. Science, 2018, 361(6409): eaao4227. |
54 | ARORA P D, WANG Y, BRESNICK A, et al. Collagen remodeling by phagocytosis is determined by collagen substrate topology and calcium-dependent interactions of gelsolin with nonmuscle myosin ⅡA in cell adhesions[J]. Mol Biol Cell, 2013, 24(6): 734-747. |
55 | RAINERO E. Extracellular matrix endocytosis in controlling matrix turnover and beyond: emerging roles in cancer[J]. Biochem Soc Trans, 2016, 44(5): 1347-1354. |
56 | MELANDER M C, JÜRGENSEN H J, MADSEN D H, et al. The collagen receptor uPARAP/Endo180 in tissue degradation and cancer (Review)[J]. Int J Oncol, 2015, 47(4): 1177-1188. |
57 | MORRIS B A, BURKEL B, PONIK S M, et al. Collagen matrix density drives the metabolic shift in breast cancer cells[J]. EBioMedicine, 2016, 13: 146-156. |
58 | WU Y, ZANOTELLI M R, ZHANG J, et al. Matrix-driven changes in metabolism support cytoskeletal activity to promote cell migration[J]. Biophys J, 2021, 120(9): 1705-1717. |
59 | D'ANIELLO C, CERMOLA F, PALAMIDESSI A, et al. Collagen prolyl hydroxylation-dependent metabolic perturbation governs epigenetic remodeling and mesenchymal transition in pluripotent and cancer cells[J]. Cancer Res, 2019, 79(13): 3235-3250. |
60 | RAPPU P, SALO A M, MYLLYHARJU J, et al. Role of prolyl hydroxylation in the molecular interactions of collagens[J]. Essays Biochem, 2019, 63(3): 325-335. |
61 | LI Q, WANG Q, ZHANG Q, et al. Collagen prolyl 4-hydroxylase 2 predicts worse prognosis and promotes glycolysis in cervical cancer[J]. Am J Transl Res, 2019, 11(11): 6938-6951. |
62 | LIN J, JIANG L, WANG X, et al. P4HA2 promotes epithelial-to-mesenchymal transition and glioma malignancy through the collagen-dependent PI3K/AKT pathway[J]. J Oncol, 2021, 2021: 1406853. |
63 | BAI J, LIU T, TU B, et al. Autophagy loss impedes cancer-associated fibroblast activation via downregulating proline biosynthesis[J]. Autophagy, 2023, 19(2): 632-643. |
64 | WU Y, LIU X, ZHU Y, et al. Type Ⅳ collagen α5 chain promotes luminal breast cancer progression through c-Myc-driven glycolysis[J]. J Mol Cell Biol, 2023, 14(10): mjac068. |
65 | CONKLIN M W, EICKHOFF J C, RICHING K M, et al. Aligned collagen is a prognostic signature for survival in human breast carcinoma[J]. Am J Pathol, 2011, 178(3): 1221-1232. |
66 | PAVLOVA I P, NAIR S S, LUNDON D, et al. Multiphoton microscopy for identifying collagen signatures associated with biochemical recurrence in prostate cancer patients[J]. J Pers Med, 2021, 11(11): 1061. |
67 | JONES B, THOMAS G, WESTREICH J, et al. Novel quantitative signature of tumor stromal architecture: polarized light imaging differentiates between myxoid and sclerotic human breast cancer stroma[J]. Biomed Opt Express, 2020, 11(6): 3246-3262. |
68 | BRISSON B K, STEWART D C, BURGWIN C, et al. Cysteine-rich domain of type Ⅲ collagen N-propeptide inhibits fibroblast activation by attenuating TGFβ signaling[J]. Matrix Biol, 2022, 109: 19-33. |
69 | MOMIN N, MEHTA N K, BENNETT N R, et al. Anchoring of intratumorally administered cytokines to collagen safely potentiates systemic cancer immunotherapy[J]. Sci Transl Med, 2019, 11(498): eaaw2614. |
70 | BERESTJUK I, LECACHEUR M, CARMINATI A, et al. Targeting discoidin domain receptors DDR1 and DDR2 overcomes matrix-mediated tumor cell adaptation and tolerance to BRAF-targeted therapy in melanoma[J]. EMBO Mol Med, 2022, 14(2): e11814. |
71 | XU S, XU H, WANG W, et al. The role of collagen in cancer: from bench to bedside[J]. J Transl Med, 2019, 17(1): 309. |
72 | ISLAM M S, AFRIN S, SINGH B, et al. Extracellular matrix and hippo signaling as therapeutic targets of antifibrotic compounds for uterine fibroids[J]. Clin Transl Med, 2021, 11(7): e475. |
[1] | 王千懿, 冉欣悦, 张沛灵, 慈政, 雷东, 周广东. 软骨脱细胞基质/丝素蛋白活性支架的构建及其软骨组织工程研究[J]. 上海交通大学学报(医学版), 2023, 43(7): 795-803. |
[2] | 肖蓉, 陶双芬, 陈思宇, 郑磊贞, 朱美玲. 幽门螺杆菌参与胃癌侵袭转移的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(4): 495-499. |
[3] | 崔锡炜, 钟民衎, 热汗姑丽·艾买尔, 王智超, 李青峰. 人多效蛋白抑制恶性周围神经鞘瘤转移的机制研究[J]. 上海交通大学学报(医学版), 2022, 42(9): 1225-1238. |
[4] | 张修齐, 沈柏用. 胰腺导管腺癌神经侵袭的细胞学机制研究进展[J]. 上海交通大学学报(医学版), 2022, 42(6): 833-838. |
[5] | 戚炀炀, 熊鹰. Galectin-9阳性肿瘤相关巨噬细胞在肌层浸润性膀胱癌中的表型、功能及临床治疗意义[J]. 上海交通大学学报(医学版), 2022, 42(12): 1666-1676. |
[6] | 孙潇智, 李爽, 金颖, 廖兵. 酶消化细胞团块法对人胚胎干细胞中OCT4与SOX2蛋白水平的影响[J]. 上海交通大学学报(医学版), 2021, 41(4): 413-420. |
[7] | 刘梦珂, 纪濛濛, 程林, 黄金艳, 孙晓建, 赵维莅, 王黎. 黄芩苷抗肿瘤作用机制的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(2): 246-250. |
[8] | 徐忠匀,吴书其,王少雁,王丹阳,傅宏亮. 131I治疗分化型甲状腺癌伴肺转移的效果评价及其影响因素分析[J]. 上海交通大学学报(医学版), 2019, 39(4): 412-. |
[9] | 范霞 1,夏碧丽 2,吕霖 1,徐梦莎 3,李佳茵 1,何平 1. 小鼠巨噬细胞对钩端螺旋体 56606v和 56606a的吞噬及炎症应答的比较研究[J]. 上海交通大学学报(医学版), 2019, 39(1): 16-. |
[10] | 纪安琪,邓国英,王秋根,王谦. 力学失稳态导致骨关节炎的机制研究进展[J]. 上海交通大学学报(医学版), 2017, 37(4): 561-. |
[11] | 康乐,陈丽,李彩霞,陈霞,程忠平 . 盆底器官脱垂患者主要支持韧带中雌激素受体GPR30表达的研究[J]. 上海交通大学学报(医学版), 2017, 37(10): 1376-. |
[12] | 汪成,洪晏,余燕民,等. 肿瘤转移相关蛋白3与乳腺癌预后的相关性研究[J]. 上海交通大学学报(医学版), 2016, 36(2): 195-. |
[13] | 鲍菁,谢明,焦婷. 牵张应力对人牙周膜成纤维细胞细胞外金属基质蛋白酶诱导剂表达的影响及相关信号通路的研究[J]. 上海交通大学学报(医学版), 2015, 35(9): 1280-. |
[14] | 刘博,邱纯,李鹏,等. 靶向敲除JARID2基因对葡萄膜黑色素瘤细胞生长与转移的影响[J]. 上海交通大学学报(医学版), 2015, 35(5): 642-. |
[15] | 史浩骏,王志刚. 长链非编码RNA肺腺癌转移相关转录本1及其在肿瘤转移中的作用[J]. 上海交通大学学报(医学版), 2014, 34(8): 1254-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||