1 |
LI Y, TENG D, SHI X, et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study[J]. BMJ, 2020, 369: m997.
|
2 |
ZHENG Y, LEY S H, HU F B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications[J]. Nat Rev Endocrinol, 2018, 14: 88-98.
|
3 |
AL-SULAITI H, DIBOUN I, AGHA M V, et al. Metabolic signature of obesity-associated insulin resistance and type 2 diabetes[J]. J Transl Med, 2019, 17(1): 348.
|
4 |
POPKIN B M. Synthesis and implications: China's nutrition transition in the context of changes across other low- and middle-income countries[J]. Obes Rev, 2014, 15(Suppl 1): 60-67.
|
5 |
GORDON-LARSEN P, WANG H, POPKIN B M. Overweight dynamics in Chinese children and adults[J]. Obes Rev, 2014, 15(Suppl 1): 37-48.
|
6 |
SUBRAMANIAN S, CHAIT A. Hypertriglyceridemia secondary to obesity and diabetes[J]. Biochim Biophys Acta, 2012, 1821(5): 819-825.
|
7 |
REINER Ž. Hypertriglyceridaemia and risk of coronary artery disease[J]. Nat Rev Cardiol, 2017, 14: 401-411.
|
8 |
YANG A L, MCNABB-BALTAR J. Hypertriglyceridemia and acute pancreatitis[J]. Pancreatology, 2020, 20(5): 795-800.
|
9 |
ALEXOPOULOS A S, QAMAR A, HUTCHINS K, et al. Triglycerides: emerging targets in diabetes care? review of moderate hypertriglyceridemia in diabetes[J]. Curr Diabetes Rep, 2019, 19(4): 13.
|
10 |
GEISS-FRIEDLANDER R, MELCHIOR F. Concepts in sumoylation: a decade on[J]. Nat Rev Mol Cell Biol, 2007, 8: 947-956.
|
11 |
FLOTHO A, MELCHIOR F. Sumoylation: a regulatory protein modification in health and disease[J]. Annu Rev Biochem, 2013, 82: 357-385.
|
12 |
GAREAU J R, LIMA C D. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition[J]. Nat Rev Mol Cell Biol, 2010, 11: 861-871.
|
13 |
LIANG Y C, LEE C C, YAO Y L, et al. SUMO5, a novel poly-SUMO isoform, regulates PML nuclear bodies[J]. Sci Rep, 2016, 6: 26509.
|
14 |
FAGERBERG L, HALLSTRÖM B M, OKSVOLD P, et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics[J]. Mol Cell Proteom, 2014, 13(2): 397-406.
|
15 |
CHANG H M, YEH E T H. SUMO: from bench to bedside[J]. Physiol Rev, 2020, 100(4): 1599-1619.
|
16 |
BARRY J, LOCK R B. Small ubiquitin-related modifier-1: wrestling with protein regulation[J]. Int J Biochem Cell Biol, 2011, 43(1): 37-40.
|
17 |
ZHENG Q, CAO Y, CHEN Y L, et al. Senp2 regulates adipose lipid storage by de-SUMOylation of Setdb1[J]. J Mol Cell Biol, 2018, 10(3): 258-266.
|
18 |
MOORADIAN A D. Dyslipidemia in type 2 diabetes mellitus[J]. Nat Rev Endocrinol, 2009, 5: 150-159.
|
19 |
COCATE P G, NATALI A J, DE OLIVEIRA A, et al. Red but not white meat consumption is associated with metabolic syndrome, insulin resistance and lipid peroxidation in Brazilian middle-aged men[J]. Eur J Prev Cardiol, 2015, 22(2): 223-230.
|
20 |
KELLEY D E, GOODPASTER B H. Skeletal muscle triglyceride. An aspect of regional adiposity and insulin resistance[J]. Diabetes Care, 2001, 24(5): 933-941.
|
21 |
YANG Y, HE Y, WANG X, et al. Protein SUMOylation modification and its associations with disease[J]. Open Biol, 2017, 7(10): 170167.
|
22 |
BOHREN K M, NADKARNI V, SONG J H, et al. A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus[J]. J Biol Chem, 2004, 279(26): 27233-27238.
|
23 |
WOO C H, ABE J. SUMO: a post-translational modification with therapeutic potential?[J]. Curr Opin Pharmacol, 2010, 10(2): 146-155.
|
24 |
YEH E T. SUMOylation and De-SUMOylation: wrestling with life's processes[J]. J Biol Chem, 2009, 284(13): 8223-8227.
|
25 |
SEGERSTOLPE Å, PALASANTZA A, ELIASSON P, et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes[J]. Cell Metab, 2016, 24(4): 593-607.
|
26 |
DAI X Q, PLUMMER G, CASIMIR M, et al. SUMOylation regulates insulin exocytosis downstream of secretory granule docking in rodents and humans[J]. Diabetes, 2011, 60(3): 838-847.
|
27 |
HE X Y, LAI Q H, CHEN C, et al. Both conditional ablation and overexpression of E2 SUMO-conjugating enzyme (UBC9) in mouse pancreatic beta cells result in impaired beta cell function[J]. Diabetologia, 2018, 61(4): 881-895.
|
28 |
SAPIR A. Not so slim anymore-evidence for the role of SUMO in the regulation of lipid metabolism[J]. Biomolecules, 2020, 10(8): E1154.
|
29 |
CARIOU B, CHARBONNEL B, STAELS B. Thiazolidinediones and PPARγ agonists: time for a reassessment[J]. Trends Endocrinol Metab, 2012, 23(5): 205-215.
|
30 |
TONTONOZ P, SPIEGELMAN B M. Fat and beyond: the diverse biology of PPARgamma[J]. Annu Rev Biochem, 2008, 77: 289-312.
|
31 |
MIKKONEN L, HIRVONEN J, JÄNNE O A. SUMO-1 regulates body weight and adipogenesis via PPARγ in male and female mice[J]. Endocrinology, 2013, 154(2): 698-708.
|
32 |
AHMADIAN M, SUH J M, HAH N, et al. PPARγ signaling and metabolism: the good, the bad and the future[J]. Nat Med, 2013, 19: 557-566.
|
33 |
WADOSKY K M, WILLIS M S. The story so far: post-translational regulation of peroxisome proliferator-activated receptors by ubiquitination and SUMOylation[J]. Am J Physiol Heart Circ Physiol, 2012, 302(3): H515-H526.
|
34 |
KERSHAW E E, SCHUPP M, GUAN H P, et al. PPARgamma regulates adipose triglyceride lipase in adipocytes in vitro and in vivo[J]. Am J Physiol Endocrinol Metab, 2007, 293(6): E1736-E1745.
|
35 |
WOLFRUM C, STOFFEL M. Coactivation of Foxa2 through Pgc-1beta promotes liver fatty acid oxidation and triglyceride/VLDL secretion[J]. Cell Metab, 2006, 3(2): 99-110.
|
36 |
BELAGULI N S, ZHANG M, BRUNICARDI F C, et al. Forkhead box protein A2 (FOXA2) protein stability and activity are regulated by sumoylation[J]. PLoS One, 2012, 7(10): e48019.
|
37 |
LIU Y, DOU X, ZHOU W Y, et al. Hepatic small ubiquitin-related modifier (SUMO)-specific protease 2 controls systemic metabolism through SUMOylation-dependent regulation of liver-adipose tissue crosstalk [J]. Hepatology, 2021, 74(4): 1864-1883.
|
38 |
HIRANO Y, MURATA S, TANAKA K, et al. Sterol regulatory element-binding proteins are negatively regulated through SUMO-1 modification independent of the ubiquitin/26 S proteasome pathway[J]. J Biol Chem, 2003, 278(19): 16809-16819.
|
39 |
ARITO M, HORIBA T, HACHIMURA S, et al. Growth factor-induced phosphorylation of sterol regulatory element-binding proteins inhibits sumoylation, thereby stimulating the expression of their target genes, low density lipoprotein uptake, and lipid synthesis[J]. J Biol Chem, 2008, 283(22): 15224-15231.
|
40 |
LIU B, WANG T, MEI W, et al. Small ubiquitin-like modifier (SUMO) protein-specific protease 1 de-SUMOylates Sharp-1 protein and controls adipocyte differentiation[J]. J Biol Chem, 2014, 289(32): 22358-22364.
|
41 |
SHIMANO H, SATO R. SREBP-regulated lipid metabolism: convergent physiology—divergent pathophysiology[J]. Nat Rev Endocrinol, 2017, 13: 710-730.
|
42 |
SOYAL S M, NOFZIGER C, DOSSENA S, et al. Targeting SREBPs for treatment of the metabolic syndrome[J]. Trends Pharmacol Sci, 2015, 36(6): 406-416.
|
43 |
WANG Q, ZHANG N, YANG X, et al. ERα promotes SUMO1 transcription by binding with the ERE and enhances SUMO1-mediated protein SUMOylation in breast cancer[J]. Gland Surg, 2023, 12(7): 963-973.
|
44 |
CHO S J, YUN S M, LEE D H, et al. Plasma SUMO1 protein is elevated in Alzheimer's disease[J]. J Alzheimers Dis, 2015, 47(3): 639-643.
|