| [1] |
YANG H, DEROO E, ZHOU T, et al. Deciphering cell-cell communication in abdominal aortic aneurysm from single-cell RNA transcriptomic data[J]. Front Cardiovasc Med, 2022, 9: 831789.
|
| [2] |
BONTEKOE J, LIU B. Single-cell RNA sequencing provides novel insights to pathologic pathways in abdominal aortic aneurysm[J]. Front Cardiovasc Med, 2023, 10: 1172080.
|
| [3] |
WU H, XIE C, WANG R, et al. Comparative analysis of thoracic and abdominal aortic aneurysms across the segment and species at the single-cell level[J]. Front Pharmacol, 2022, 13: 1095757.
|
| [4] |
MIRANDA A M A, JANBANDHU V, MAATZ H, et al. Single-cell transcriptomics for the assessment of cardiac disease[J]. Nat Rev Cardiol, 2023, 20(5): 289-308.
|
| [5] |
CHOU E L, CHAFFIN M, SIMONSON B, et al. Aortic cellular diversity and quantitative genome-wide association study trait prioritization through single-nuclear RNA sequencing of the aneurysmal human aorta[J]. Arterioscler Thromb Vasc Biol, 2022, 42(11): 1355-1374.
|
| [6] |
DAVIS F M, TSOI L C, MA F, et al. Single-cell transcriptomics reveals dynamic role of smooth muscle cells and enrichment of immune cell subsets in human abdominal aortic aneurysms[J]. Ann Surg, 2022, 276(3): 511-521.
|
| [7] |
LI Y, REN P, DAWSON A, et al. Single-cell transcriptome analysis reveals dynamic cell populations and differential gene expression patterns in control and aneurysmal human aortic tissue[J]. Circulation, 2020, 142(14): 1374-1388.
|
| [8] |
ZHAO G, LU H, CHANG Z, et al. Single-cell RNA sequencing reveals the cellular heterogeneity of aneurysmal infrarenal abdominal aorta[J]. Cardiovasc Res, 2021, 117(5): 1402-1416.
|
| [9] |
HAO Y, STUART T, KOWALSKI M H, et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis[J]. Nat Biotechnol, 2024, 42(2): 293-304.
|
| [10] |
HAFEMEISTER C, SATIJA R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression[J]. Genome Biol, 2019, 20(1): 296.
|
| [11] |
CHOUDHARY S, SATIJA R. Comparison and evaluation of statistical error models for scRNA-seq[J]. Genome Biol, 2022, 23(1): 27.
|
| [12] |
KORSUNSKY I, MILLARD N, FAN J, et al. Fast, sensitive and accurate integration of single-cell data with Harmony[J]. Nat Methods, 2019, 16(12): 1289-1296.
|
| [13] |
ARAN D, LOONEY A P, LIU L, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage[J]. Nat Immunol, 2019, 20(2): 163-172.
|
| [14] |
HOU W, JI Z. Assessing GPT-4 for cell type annotation in single-cell RNA-seq analysis[J]. Nat Methods, 2024, 21(8): 1462-1465.
|
| [15] |
QUAN F, LIANG X, CHENG M, et al. Annotation of cell types (ACT): a convenient web server for cell type annotation[J]. Genome Med, 2023, 15(1): 91.
|
| [16] |
JIN S, GUERRERO-JUAREZ C F, ZHANG L, et al. Inference and analysis of cell-cell communication using CellChat[J]. Nat Commun, 2021, 12(1): 1088.
|
| [17] |
JIN S, PLIKUS M V, NIE Q. CellChat for systematic analysis of cell-cell communication from single-cell transcriptomics[J]. Nat Protoc, 2025, 20(1): 180-219.
|
| [18] |
AIBAR S, GONZÁLEZ-BLAS C B, MOERMAN T, et al. SCENIC: single-cell regulatory network inference and clustering[J]. Nat Methods, 2017, 14(11): 1083-1086.
|
| [19] |
SAUL D, KOSINSKY R L, ATKINSON E J, et al. A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues[J]. Nat Commun, 2022, 13(1): 4827.
|
| [20] |
LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 [J]. Genome Biol, 2014, 15(12): 550.
|
| [21] |
YU G, WANG L G, HAN Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16(5): 284-287.
|
| [22] |
XU S, HU E, CAI Y, et al. Using clusterProfiler to characterize multiomics data[J]. Nat Protoc, 2024, 19(11): 3292-3320.
|
| [23] |
ASHBURNER M, BALL C A, BLAKE J A, et al. Gene Ontology: tool for the unification of biology[J]. Nat Genet, 2000, 25(1): 25-29.
|
| [24] |
PEDROZA A J, TASHIMA Y, SHAD R, et al. Single-cell transcriptomic profiling of vascular smooth muscle cell phenotype modulation in Marfan syndrome aortic aneurysm[J]. Arterioscler Thromb Vasc Biol, 2020, 40(9): 2195-2211.
|
| [25] |
MACKAY C D A, JADLI A S, FEDAK P W M, et al. Adventitial fibroblasts in aortic aneurysm: unraveling pathogenic contributions to vascular disease[J]. Diagnostics (Basel), 2022, 12(4): 871.
|
| [26] |
MEEKEL J P, MATTEI G, COSTACHE V S, et al. A multilayer micromechanical elastic modulus measuring method in ex vivo human aneurysmal abdominal aortas[J]. Acta Biomater, 2019, 96: 345-353.
|
| [27] |
WANG D, HAO X, JIA L, et al. Cellular senescence and abdominal aortic aneurysm: from pathogenesis to therapeutics[J]. Front Cardiovasc Med, 2022, 9: 999465.
|
| [28] |
TAO W, HONG Y, HE H, et al. microRNA-199a-5p aggravates angiotensin II-induced vascular smooth muscle cell senescence by targeting Sirtuin-1 in abdominal aortic aneurysm[J]. J Cell Mol Med, 2021, 25(13): 6056-6069.
|
| [29] |
XIE J, TANG Z, CHEN Q, et al. Clearance of stress-induced premature senescent cells alleviates the formation of abdominal aortic aneurysms[J]. Aging Dis, 2023, 14(5): 1778-1798.
|
| [30] |
LU H, DU W, REN L, et al. Vascular smooth muscle cells in aortic aneurysm: from genetics to mechanisms[J]. J Am Heart Assoc, 2021, 10(24): e023601.
|
| [31] |
TETI G, CHIARINI F, MAZZOTTI E, et al. Cellular senescence in vascular wall mesenchymal stromal cells, a possible contribution to the development of aortic aneurysm[J]. Mech Ageing Dev, 2021, 197: 111515.
|
| [32] |
ASHIZAWA N, GRAF K, DO Y S, et al. Osteopontin is produced by rat cardiac fibroblasts and mediates A(II)-induced DNA synthesis and collagen gel contraction [J]. J Clin Invest, 1996, 98(10): 2218-2227.
|
| [33] |
ROTEM I, KONFINO T, CALLER T, et al. Osteopontin promotes infarct repair[J]. Basic Res Cardiol, 2022, 117(1): 51.
|
| [34] |
BRUEMMER D, COLLINS A R, NOH G, et al. Angiotensin II-accelerated atherosclerosis and aneurysm formation is attenuated in osteopontin-deficient mice[J]. J Clin Invest, 2003, 112(9): 1318-1331.
|
| [35] |
WANG S K, GREEN L A, GUTWEIN A R, et al. Osteopontin may be a driver of abdominal aortic aneurysm formation[J]. J Vasc Surg, 2018, 68(6): 22S-29S.
|