1 |
MURRAY P J, WYNN T A. Protective and pathogenic functions of macrophage subsets[J]. Nat Rev Immunol, 2011, 11(11): 723-737.
|
2 |
SHI C, PAMER E G. Monocyte recruitment during infection and inflammation[J]. Nat Rev Immunol, 2011, 11(11): 762-774.
|
3 |
MARCUS R. What is multiple sclerosis?[J]. JAMA, 2022, 328(20): 2078.
|
4 |
STRAUSS-AYALI D, CONRAD S M, MOSSER D M. Monocyte subpopulations and their differentiation patterns during infection[J]. J Leukoc Biol, 2007, 82(2): 244-252.
|
5 |
ZHANG F, WEI K, SLOWIKOWSKI K, et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry[J]. Nat Immunol, 2019, 20(7): 928-942.
|
6 |
MANTOVANI A, ALLAVENA P, MARCHESI F, et al. Macrophages as tools and targets in cancer therapy[J]. Nat Rev Drug Discov, 2022, 21(11): 799-820.
|
7 |
TIAN L, LEI A H, TAN T Y, et al. Macrophage-based combination therapies as a new strategy for cancer immunotherapy[J]. Kidney Dis, 2022, 8(1): 26-43.
|
8 |
TAKAHASHI K, TANABE K, OHNUKI M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5): 861-872.
|
9 |
TAKAHASHI K, YAMANAKA S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4): 663-676.
|
10 |
SELVARAJ V, PLANE J M, WILLIAMS A J, et al. Switching cell fate: the remarkable rise of induced pluripotent stem cells and lineage reprogramming technologies[J]. Trends Biotechnol, 2010, 28(4): 214-223.
|
11 |
PIAU O, BRUNET-MANQUAT M, L'HOMME B, et al. Generation of transgene-free hematopoietic stem cells from human induced pluripotent stem cells[J]. Cell Stem Cell, 2023, 30(12): 1610-1623.e7.
|
12 |
PAES B C M F, MOÇO P D, PEREIRA C G, et al. Ten years of iPSC: clinical potential and advances in vitro hematopoietic differentiation[J]. Cell Biol Toxicol, 2017, 33(3): 233-250.
|
13 |
GRSKOVIC M, JAVAHERIAN A, STRULOVICI B, et al. Induced pluripotent stem cells: opportunities for disease modelling and drug discovery[J]. Nat Rev Drug Discov, 2011, 10(12): 915-929.
|
14 |
VAN WILGENBURG B, BROWNE C, VOWLES J, et al. Efficient, long term production of monocyte-derived macrophages from human pluripotent stem cells under partly-defined and fully-defined conditions[J]. PLoS One, 2013, 8(8): e71098.
|
15 |
MUKHERJEE C, HALE C, MUKHOPADHYAY S. A simple multistep protocol for differentiating human induced pluripotent stem cells into functional macrophages[J]. Methods Mol Biol, 2018, 1784: 13-28.
|
16 |
ALASOO K, MARTINEZ F O, HALE C, et al. Transcriptional profiling of macrophages derived from monocytes and iPS cells identifies a conserved response to LPS and novel alternative transcription[J]. Sci Rep, 2015, 5: 12524.
|
17 |
ALSINET C, PRIMO M N, LORENZI V, et al. Robust temporal map of human in vitro myelopoiesis using single-cell genomics[J]. Nat Commun, 2022, 13(1): 2885.
|
18 |
QUAN F, LIANG X, CHENG M J, et al. Annotation of cell types (ACT): a convenient web server for cell type annotation[J]. Genome Med, 2023, 15(1): 91.
|
19 |
ZHANG L, LI Z Y, SKRZYPCZYNSKA K M, et al. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer[J]. Cell, 2020, 181(2): 442-459.e29.
|
20 |
BIAN Z L, GONG Y D, HUANG T, et al. Deciphering human macrophage development at single-cell resolution[J]. Nature, 2020, 582(7813): 571-576.
|
21 |
DAVIES L C, JENKINS S J, ALLEN J E, et al. Tissue-resident macrophages[J]. Nat Immunol, 2013, 14(10): 986-995.
|
22 |
MALLAPATY S. Revealed: two men in China were first to receive pioneering stem-cell treatment for heart disease[J]. Nature, 2020, 581(7808): 249-250.
|
23 |
TANG X Y, WU S S, WANG D, et al. Human organoids in basic research and clinical applications[J]. Signal Transduct Target Ther, 2022, 7(1): 168.
|