1 |
SCHMIDT-RIOVALLE J, EJHEISHEH MABU, MEMBRIVE-JIMÉNEZ M J, et al. Quality of life after coronary artery bypass surgery: a systematic review and meta-analysis[J]. Int J Environ Res Public Health, 2020, 17(22): 8439.
|
2 |
ZHAO Q, YANG Y, CHEN Z, et al. Changes in characteristics, risk factors, and in-hospital mortality among patients with acute myocardial infarction in the capital of China over 40 years[J]. Int J Cardiol, 2018, 265: 30-34.
|
3 |
HAN J Y, LI Q, PAN C S, et al. Effects and mechanisms of QiShenYiQi pills and major ingredients on myocardial microcirculatory disturbance, cardiac injury and fibrosis induced by ischemia-reperfusion[J]. Pharmacol Res, 2019, 147: 104386.
|
4 |
KOBAYASHI M, SUHARA T, BABA Y, et al. Pathological roles of iron in cardiovascular disease[J]. Curr Drug Targets, 2018, 19(9): 1068-1076.
|
5 |
BULLUCK H, YELLON D M, HAUSENLOY D J. Reducing myocardial infarct size: challenges and future opportunities[J]. Heart, 2016, 102(5): 341-348.
|
6 |
HAUSENLOY D J, YELLON D M. Myocardial ischemia-reperfusion injury: a neglected therapeutic target[J]. J Clin Invest, 2013, 123(1): 92-100.
|
7 |
HEUSCH G. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective[J]. Nat Rev Cardiol, 2020, 17(12): 773-789.
|
8 |
SÄNCHEZ-HERNÄNDEZ C D, TORRES-ALARCÓN L A, GONZÄLEZ-CORTÉS A, et al. Ischemia/reperfusion injury: pathophysiology, current clinical management, and potential preventive approaches[J]. Mediators Inflamm, 2020, 2020: 8405370.
|
9 |
GHAFOURI-FARD S, SHOOREI H, TAHERI M. Non-coding RNAs participate in the ischemia-reperfusion injury[J]. Biomed Pharmacother, 2020, 129: 110419.
|
10 |
KOLDE R, LAUR S, ADLER P, et al. Robust rank aggregation for gene list integration and meta-analysis[J]. Bioinformatics, 2012, 28(4): 573-580.
|
11 |
BONAVENTURA A, MONTECUCCO F, DALLEGRI F. Cellular recruitment in myocardial ischaemia/reperfusion injury[J]. Eur J Clin Invest, 2016, 46(6): 590-601.
|
12 |
FIORDELISI A, IACCARINO G, MORISCO C, et al. NF-κB is a key player in the crosstalk between inflammation and cardiovascular diseases[J]. Int J Mol Sci, 2019, 20(7): 1599.
|
13 |
HA T, LIU L, KELLEY J, et al. Toll-like receptors: new players in myocardial ischemia/reperfusion injury[J]. Antioxid Redox Signal, 2011, 15(7): 1875-1893.
|
14 |
VILAHUR G, BADIMON L. Ischemia/reperfusion activates myocardial innate immune response: the key role of the toll-like receptor[J]. Front Physiol, 2014, 5: 496.
|
15 |
FRANGOGIANNIS N G. Chemokines in ischemia and reperfusion[J]. Thromb Haemost, 2007, 97(5): 738-747.
|
16 |
ASHTON K J, TUPICOFF A, WILLIAMS-PRITCHARD G, et al. Unique transcriptional profile of sustained ligand-activated preconditioning in pre- and post-ischemic myocardium[J]. PLoS One, 2013, 8(8): e72278.
|
17 |
LI J, PENG C, GUO Z, et al. Radioiodinated pentixather for SPECT imaging of expression of the chemokine receptor CXCR4 in rat myocardial-infarction-reperfusion models[J]. Anal Chem, 2018, 90(15): 9614-9620.
|
18 |
LI X, AISHAN B, YANG Y, et al. Chemokine (C-C motif) ligand 6 aggravates hypoxia reoxygenation-induced apoptosis in H9c2 cells through enhancing the expression of insulin-like growth factor 2-antisense[J]. J Cardiovasc Pharmacol, 2020, 76(5): 549-555.
|
19 |
MIAO Y, DING Z, ZOU Z, et al. Inhibition of MyD88 by a novel inhibitor reverses two-thirds of the infarct area in myocardial ischemia and reperfusion injury[J]. Am J Transl Res, 2020, 12(9): 5151-5169.
|
20 |
REN D, WANG X, HA T, et al. SR-A deficiency reduces myocardial ischemia/reperfusion injury; involvement of increased microRNA-125b expression in macrophages[J]. Biochim Biophys Acta, 2013, 1832(2): 336-346.
|
21 |
HAYASAKI T, KAIKITA K, OKUMA T, et al. CC chemokine receptor-2 deficiency attenuates oxidative stress and infarct size caused by myocardial ischemia-reperfusion in mice[J]. Circ J, 2006, 70(3): 342-351.
|
22 |
ECKHOUSE S R, AKERMAN A W, LOGDON C B, et al. Differential membrane type 1 matrix metalloproteinase substrate processing with ischemia-reperfusion: relationship to interstitial microRNA dynamics and myocardial function[J]. J Thorac Cardiovasc Surg, 2013, 145(1): 267-275, 277.
|
23 |
VUOHELAINEN V, RAITOHARJU E, LEVULA M, et al. Myocardial infarction induces early increased remote ADAM8 expression of rat hearts after cardiac arrest[J]. Scand J Clin Lab Invest, 2011, 71(7): 553-562.
|
24 |
LI Y, LI Z, ZHANG X, et al. Association of ALOX5AP haplotypes with susceptibility to coronary artery disease in a Chinese Han population[J]. Eur J Intern Med, 2012, 23(5): e119-e123.
|
25 |
NAGELKERKE S Q, SCHMIDT D E, DE HAAS M, et al. Genetic variation in low-to-medium-affinity Fcγ receptors: functional consequences, disease associations, and opportunities for personalized medicine[J]. Front Immunol, 2019, 10: 2237.
|
26 |
DEBERGE M, YEAP X Y, DEHN S, et al. MerTK cleavage on resident cardiac macrophages compromises repair after myocardial ischemia reperfusion injury[J]. Circ Res, 2017, 121(8): 930-940.
|
27 |
WU R, LI X, XU P, et al. TREM2 protects against cerebral ischemia/reperfusion injury[J]. Mol Brain, 2017, 10(1): 20.
|
28 |
NAKAO T, ONO Y, DAI H, et al. DNAX activating protein of 12 kDa/triggering receptor expressed on myeloid cells 2 expression by mouse and human liver dendritic cells: functional implications and regulation of liver ischemia-reperfusion injury[J]. Hepatology, 2019, 70(2): 696-710.
|
29 |
梁芳特, 刘豪, 何小静, 等. 2型髓系细胞触发受体在小鼠肺缺血/再灌注损伤中的作用及调控机制[J]. 中华危重病急救医学, 2021, 33(8): 933-937.
|
30 |
骆余佳. 髓系细胞触发受体2(TREM-2)在小鼠肾缺血再灌注损伤中作用的初步探讨[D].杭州: 浙江大学, 2019.
|
31 |
BOAG S E, ANDREANO E, SPYRIDOPOULOS I. Lymphocyte communication in myocardial ischemia/reperfusion injury[J]. Antioxid Redox Signal, 2017, 26(12): 660-675.
|
32 |
HOFMANN U, FRANTZ S. Role of lymphocytes in myocardial injury, healing, and remodeling after myocardial infarction[J]. Circ Res, 2015, 116(2): 354-367.
|
33 |
DUNLOCK V E. Tetraspanin CD53: an overlooked regulator of immune cell function[J]. Med Microbiol Immunol, 2020, 209(4): 545-552.
|
34 |
BONAUD A, CLARE S, BISIO V, et al. Leupaxin expression is dispensable for B cell immune responses[J]. Front Immunol, 2020, 11: 466.
|
35 |
SONG Q, QIN S, PASCAL L E, et al. SIRPB1 promotes prostate cancer cell proliferation via Akt activation[J]. Prostate, 2020, 80(4): 352-364.
|
36 |
HANSEN M C, NYVOLD C G, ROUG A S, et al. Nature and nurture: a case of transcending haematological pre-malignancies in a pair of monozygotic twins adding possible clues on the pathogenesis of B-cell proliferations[J]. Br J Haematol, 2015, 169(3): 391-400.
|