上海交通大学学报(医学版) ›› 2023, Vol. 43 ›› Issue (10): 1311-1316.doi: 10.3969/j.issn.1674-8115.2023.10.013
• 综述 • 上一篇
收稿日期:
2023-02-21
接受日期:
2023-06-30
出版日期:
2023-10-28
发布日期:
2023-10-28
通讯作者:
孟健
E-mail:2364651802@qq.com;sheshe114@126.com
作者简介:
吴瑞芳(1996—),女,硕士生;电子信箱:2364651802@qq.com。
基金资助:
WU Ruifang(), FENG Ming, MENG Jian(
)
Received:
2023-02-21
Accepted:
2023-06-30
Online:
2023-10-28
Published:
2023-10-28
Contact:
MENG Jian
E-mail:2364651802@qq.com;sheshe114@126.com
Supported by:
摘要:
肥胖是威胁人类健康的主要因素之一,过度脂肪堆积不仅对人体代谢、心血管系统有不利影响,同时也与多种肿瘤的发生率和致死率密切相关。脂肪酸结合蛋白4(fatty acid binding protein-4,FABP4)是一种主要在脂肪细胞和巨噬细胞表达的小分子蛋白,负责参与脂肪酸转运和应答反应。研究发现,FABP4水平不仅与体脂含量相关,还在多种肥胖相关的肿瘤细胞及肿瘤微环境中异常表达,且该异常表达与肥胖相关肿瘤的发生、转移、复发及患者预后均密切相关。由于FABP4在各种肥胖相关肿瘤中的表达不尽相同,提示其在不同肿瘤的发生、发展中的作用可能更为复杂。基于此,该文针对FABP4在多种肥胖相关肿瘤中发挥的不同作用进行综述。
中图分类号:
吴瑞芳, 冯明, 孟健. 脂肪酸结合蛋白4在肥胖相关肿瘤中的作用综述[J]. 上海交通大学学报(医学版), 2023, 43(10): 1311-1316.
WU Ruifang, FENG Ming, MENG Jian. Review of role of fatty acid binding protein-4 in obesity-associated tumors[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(10): 1311-1316.
1 | AMIRI M, YOUSEFNIA S, SEYED FOROOTAN F, et al. Diverse roles of fatty acid binding proteins (FABPs) in development and pathogenesis of cancers[J]. Gene, 2018, 676: 171-183. |
2 | STORCH J, THUMSER A E. Tissue-specific functions in the fatty acid-binding protein family[J]. J Biol Chem, 2010, 285(43): 32679-32683. |
3 | GARIN-SHKOLNIK T, RUDICH A, HOTAMISLIGIL G S, et al. FABP4 attenuates PPARγ and adipogenesis and is inversely correlated with PPARγ in adipose tissues[J]. Diabetes, 2014, 63(3): 900-911. |
4 | PRENTICE K J, SAKSI J, HOTAMISLIGIL G S. Adipokine FABP4 integrates energy stores and counterregulatory metabolic responses[J]. J Lipid Res, 2019, 60(4): 734-740. |
5 | DOU H X, WANG T, SU H X, et al. Exogenous FABP4 interferes with differentiation, promotes lipolysis and inflammation in adipocytes[J]. Endocrine, 2020, 67(3): 587-596. |
6 | XU A M, WANG Y, XU J Y, et al. Adipocyte fatty acid-binding protein is a plasma biomarker closely associated with obesity and metabolic syndrome[J]. Clin Chem, 2006, 52(3): 405-413. |
7 | FURUHASHI M. Fatty acid-binding protein 4 in cardiovascular and metabolic diseases[J]. J Atheroscler Thromb, 2019, 26(3): 216-232. |
8 | SUN N, ZHAO X. Therapeutic implications of FABP4 in cancer: an emerging target to tackle cancer[J]. Front Pharmacol, 2022, 13: 948610. |
9 | CHEN X W, DING G, XU L, et al. A glimpse at the metabolic research in China[J]. Cell Metab, 2021, 33(11): 2122-2125. |
10 | CHENG C, ZHUO S M, ZHANG B, et al. Treatment implications of natural compounds targeting lipid metabolism in nonalcoholic fatty liver disease, obesity and cancer[J]. Int J Biol Sci, 2019, 15(8): 1654-1663. |
11 | AVGERINOS K I, SPYROU N, MANTZOROS C S, et al. Obesity and cancer risk: emerging biological mechanisms and perspectives[J]. Metabolism, 2019, 92: 121-135. |
12 | LIU S J, WU D, FAN Z Y, et al. FABP4 in obesity-associated carcinogenesis: novel insights into mechanisms and therapeutic implications[J]. Front Mol Biosci, 2022, 9: 973955. |
13 | PAVLOVA N N, ZHU J, THOMPSON C B. The hallmarks of cancer metabolism: still emerging[J]. Cell Metab, 2022, 34(3): 355-377. |
14 | MUKHERJEE A, BILECZ A J, LENGYEL E. The adipocyte microenvironment and cancer[J]. Cancer Metastasis Rev, 2022, 41(3): 575-587. |
15 | CABIA B, ANDRADE S, CARREIRA M C, et al. A role for novel adipose tissue-secreted factors in obesity-related carcinogenesis[J]. Obes Rev, 2016, 17(4): 361-376. |
16 | LHEUREUX S, GOURLEY C, VERGOTE I, et al. Epithelial ovarian cancer[J]. Lancet, 2019, 393(10177): 1240-1253. |
17 | KUROKI L, GUNTUPALLI S R. Treatment of epithelial ovarian cancer[J]. BMJ, 2020, 371: m3773. |
18 | NIEMAN K M, KENNY H A, PENICKA C V, et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth[J]. Nat Med, 2011, 17(11): 1498-1503. |
19 | MUKHERJEE A, CHIANG C Y, DAIFOTIS H A, et al. Adipocyte-induced FABP4 expression in ovarian cancer cells promotes metastasis and mediates carboplatin resistance[J]. Cancer Res, 2020, 80(8): 1748-1761. |
20 | SANHUEZA S, SIMÓN L, CIFUENTES M, et al. The adipocyte-macrophage relationship in cancer: a potential target for antioxidant therapy[J]. Antioxidants (Basel), 2023, 12(1): 126. |
21 | YU C Y, NIU X L, DU Y R, et al. IL-17A promotes fatty acid uptake through the IL-17A/IL-17RA/p-STAT3/FABP4 axis to fuel ovarian cancer growth in an adipocyte-rich microenvironment[J]. Cancer Immunol Immunother, 2020, 69(1): 115-126. |
22 | GHARPURE K M, PRADEEP S, SANS M, et al. FABP4 as a key determinant of metastatic potential of ovarian cancer[J]. Nat Commun, 2018, 9(1): 2923. |
23 | KIM S I, JUNG M, DAN K, et al. Proteomic discovery of biomarkers to predict prognosis of high-grade serous ovarian carcinoma[J]. Cancers (Basel), 2020, 12(4): 790. |
24 | PICON-RUIZ M, MORATA-TARIFA C, VALLE-GOFFIN J J, et al. Obesity and adverse breast cancer risk and outcome: mechanistic insights and strategies for intervention[J]. CA Cancer J Clin, 2017, 67(5): 378-397. |
25 | HANCKE K, GRUBECK D, HAUSER N, et al. Adipocyte fatty acid-binding protein as a novel prognostic factor in obese breast cancer patients[J]. Breast Cancer Res Treat, 2010, 119(2): 367-377. |
26 | HAO J Q, ZHANG Y W, YAN X F, et al. Circulating adipose fatty acid binding protein is a new link underlying obesity-associated breast/mammary tumor development[J]. Cell Metab, 2018, 28(5): 689-705.e5. |
27 | KIM H M, LEE Y K, KIM E S, et al. Energy transfer from adipocytes to cancer cells in breast cancer[J]. Neoplasma, 2020, 67(5): 992-1001. |
28 | WANG J C, LI Y S. CD36 tango in cancer: signaling pathways and functions[J]. Theranostics, 2019, 9(17): 4893-4908. |
29 | GYAMFI J, YEO J H, KWON D, et al. Interaction between CD36 and FABP4 modulates adipocyte-induced fatty acid import and metabolism in breast cancer[J]. NPJ Breast Cancer, 2021, 7(1): 129. |
30 | LIU Z, GAO Z J, LI B, et al. Lipid-associated macrophages in the tumor-adipose microenvironment facilitate breast cancer progression[J]. Oncoimmunology, 2022, 11(1): 2085432. |
31 | POYNTER J N, RICHARDSON M, BLAIR C K, et al. Obesity over the life course and risk of acute myeloid leukemia and myelodysplastic syndromes[J]. Cancer Epidemiol, 2016, 40: 134-140. |
32 | SHAFAT M S, OELLERICH T, MOHR S, et al. Leukemic blasts program bone marrow adipocytes to generate a protumoral microenvironment[J]. Blood, 2017, 129(10): 1320-1332. |
33 | TABE Y, YAMAMOTO S, SAITOH K, et al. Bone marrow adipocytes facilitate fatty acid oxidation activating AMPK and a transcriptional network supporting survival of acute monocytic leukemia cells[J]. Cancer Res, 2017, 77(6): 1453-1464. |
34 | SHEN N, YAN F, PANG J X, et al. A nucleolin-DNMT1 regulatory axis in acute myeloid leukemogenesis[J]. Oncotarget, 2014, 5(14): 5494-5509. |
35 | GARZON R, LIU S J, FABBRI M, et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1[J]. Blood, 2009, 113(25): 6411-6418. |
36 | PRADA-ARISMENDY J, ARROYAVE J C, RÖTHLISBERGER S. Molecular biomarkers in acute myeloid leukemia[J]. Blood Rev, 2017, 31(1): 63-76. |
37 | YAN F, SHEN N, PANG J X, et al. Fatty acid-binding protein FABP4 mechanistically links obesity with aggressive AML by enhancing aberrant DNA methylation in AML cells[J]. Leukemia, 2017, 31(6): 1434-1442. |
38 | YAN F, SHEN N, PANG J X, et al. A vicious loop of fatty acid-binding protein 4 and DNA methyltransferase 1 promotes acute myeloid leukemia and acts as a therapeutic target[J]. Leukemia, 2018, 32(4): 865-873. |
39 | MCGLYNN K A, PETRICK J L, EL-SERAG H B. Epidemiology of hepatocellular carcinoma[J]. Hepatology, 2021, 73(Suppl 1): 4-13. |
40 | THOMPSON K J, AUSTIN R G, NAZARI S S, et al. Altered fatty acid-binding protein 4 (FABP4) expression and function in human and animal models of hepatocellular carcinoma[J]. Liver Int, 2018, 38(6): 1074-1083. |
41 | YANG H R, DENG Q M, NI T, et al. Targeted inhibition of LPL/FABP4/CPT1 fatty acid metabolic axis can effectively prevent the progression of nonalcoholic steatohepatitis to liver cancer[J]. Int J Biol Sci, 2021, 17(15): 4207-4222. |
42 | ZHONG C Q, ZHANG X P, MA N, et al. FABP4 suppresses proliferation and invasion of hepatocellular carcinoma cells and predicts a poor prognosis for hepatocellular carcinoma[J]. Cancer Med, 2018, 7(6): 2629-2640. |
43 | ADESUNLOYE B A. Mechanistic insights into the link between obesity and prostate cancer[J]. Int J Mol Sci, 2021, 22(8): 3935. |
44 | GÖBEL A, DELL'ENDICE S, JASCHKE N, et al. The role of inflammation in breast and prostate cancer metastasis to bone[J]. Int J Mol Sci, 2021, 22(10): 5078. |
45 | HERROON M K, RAJAGURUBANDARA E, HARDAWAY A L, et al. Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms[J]. Oncotarget, 2013, 4(11): 2108-2123. |
46 | UEHARA H, TAKAHASHI T, OHA M, et al. Exogenous fatty acid binding protein 4 promotes human prostate cancer cell progression[J]. Int J Cancer, 2014, 135(11): 2558-2568. |
47 | HOTAMISLIGIL G S, BERNLOHR D A. Metabolic functions of FABPs: mechanisms and therapeutic implications[J]. Nat Rev Endocrinol, 2015, 11(10): 592-605. |
[1] | 魏兰懿, 薛晓川, 陈君君, 杨全军, 王梦月, 韩永龙. 骨肉瘤免疫微环境中肿瘤相关巨噬细胞及其靶向治疗的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(5): 624-630. |
[2] | 马芳芳, 秦洁洁, 任灵杰, 唐笑梅, 刘佳, 施敏敏, 蒋玲曦. 基于水凝胶微球建立胰腺癌原代细胞的3D培养模型[J]. 上海交通大学学报(医学版), 2023, 43(1): 79-87. |
[3] | 林家俞, 秦洁洁, 蒋玲曦. 肿瘤微环境中免疫细胞的代谢研究进展[J]. 上海交通大学学报(医学版), 2022, 42(8): 1122-1130. |
[4] | 李昕雨, 左斌, 王文, 钮晓音, 翁震, 何杨. 脂联素在免疫性血小板减少症患者外周血中的水平及其对巨核细胞系分化的作用[J]. 上海交通大学学报(医学版), 2022, 42(7): 866-874. |
[5] | 王雨心, 孙瑞琪, 刘坚华, 何伟娜. 开发用于肿瘤微环境成像的pH敏感荧光探针[J]. 上海交通大学学报(医学版), 2022, 42(7): 875-884. |
[6] | 李静威, 王俐文, 蒋玲曦, 詹茜, 陈皓, 沈柏用. 胰腺癌免疫抑制性肿瘤微环境研究综述[J]. 上海交通大学学报(医学版), 2021, 41(8): 1103-1108. |
[7] | 那迪娜·帕尔哈提null, 严妍, 车千纪, 罗菁, 刘鑫男, 李斌. 嵌合抗原受体T细胞疗法在胶质母细胞瘤中的应用与展望[J]. 上海交通大学学报(医学版), 2021, 41(7): 982-986. |
[8] | 顾琦晟, 张米粒, 曹灿, 李继坤. 基于TCGA数据库分析胃癌可变剪接与肿瘤免疫的关系[J]. 上海交通大学学报(医学版), 2021, 41(4): 448-458. |
[9] | 刘梦珂, 纪濛濛, 程林, 黄金艳, 孙晓建, 赵维莅, 王黎. 黄芩苷抗肿瘤作用机制的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(2): 246-250. |
[10] | 赵伟光,刘志宏. 肿瘤相关成纤维细胞调控肿瘤免疫炎症微环境的研究进展[J]. 上海交通大学学报(医学版), 2020, 40(9): 1288-1293. |
[11] | 刘 洁,仇晓春. 乳腺肿瘤干细胞研究热点及趋势分析[J]. 上海交通大学学报(医学版), 2020, 40(7): 881-888. |
[12] | 潘德燊1, 2,李 登1,邵 怡1. 白细胞介素 -11对肿瘤促进作用的研究进展[J]. 上海交通大学学报(医学版), 2020, 40(4): 548-. |
[13] | 梁雨,江明杰,田聆. 前列腺素 E 2重塑胰腺肿瘤微环境的作用机制研究进展[J]. 上海交通大学学报(医学版), 2019, 39(8): 923-. |
[14] | 买地娜依 ·库得来提 1,唐文静 2,何雯楠 2,汪佳璐 2,宋还雷 3,沈秀华 2, 3. 表没食子儿茶素没食子酸酯对3T3-L1脂肪细胞氧化应激和炎症水平的影响[J]. 上海交通大学学报(医学版), 2018, 38(11): 1289-. |
[15] | 黄婧婧,马宇航,王育璠. 脂肪细胞膜相关蛋白的研究进展[J]. 上海交通大学学报(医学版), 2017, 37(11): 1548-. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1441
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 858
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||