上海交通大学学报(医学版) ›› 2023, Vol. 43 ›› Issue (10): 1304-1310.doi: 10.3969/j.issn.1674-8115.2023.10.012
• 综述 • 上一篇
收稿日期:
2023-07-24
接受日期:
2023-09-21
出版日期:
2023-10-28
发布日期:
2023-10-28
通讯作者:
严兴科
E-mail:mc754169434@126.com;yanxingke@126.com
作者简介:
马 翠(1994—),女,博士生;E-mail:mc754169434@126.com。
基金资助:
MA CUI(), YE Yujuan, YAN Xingke()
Received:
2023-07-24
Accepted:
2023-09-21
Online:
2023-10-28
Published:
2023-10-28
Contact:
YAN Xingke
E-mail:mc754169434@126.com;yanxingke@126.com
Supported by:
摘要:
痛情绪的发生与特定中枢神经环路功能和结构改变密切相关。疼痛伴发抑郁、焦虑、痛厌恶记忆等情绪状态时,其激活或抑制的神经环路不同。边缘系统杏仁核(amygdala,AMY)参与疼痛与焦虑、抑郁、痛厌恶记忆等情绪的调节,并与疼痛和情绪相关的大脑核团存在广泛联系,共同调控疼痛、焦虑、抑郁、痛厌恶记忆等反应。该文对AMY介导的痛情绪相关的主要环路进行了梳理,总结出与抑郁相关的神经环路包括中央杏仁核→丘脑束旁核(CeA GABA→PF Glu)、中缝背核→中央杏仁核(DRN 5-HT→CeA SOM)、中央杏仁核→腹外侧导水管周围灰质(CeA GABA→vlPAG GABA),与焦虑相关的神经环路包括腹侧被盖区→中央杏仁核(VTA→CeADA)、蓝斑→基底外侧杏仁核(LC NE→BLA),与痛厌恶记忆相关的神经环路为外侧臂旁核→中央杏仁核(lPBN CGRP→CeA CGRP)。其中,激活CeA GABA→PF Glu环路可导致抑郁伴疼痛,激活CeA GABA→vlPAG GABA环路可减轻抑郁导致的痛敏,激活DRN 5-HT→CeA SOM环路可以缓解疼痛感受和抑郁情绪;激活VTA→CeA DA环路可以减轻痛敏以及焦虑样行为,抑制LC NE→BLA环路可缓解疼痛导致的焦虑;激活lPBN CGRP→CeA CGRP环路可产生痛厌恶记忆。
中图分类号:
马翠, 叶钰娟, 严兴科. 杏仁核介导的痛情绪神经环路研究进展[J]. 上海交通大学学报(医学版), 2023, 43(10): 1304-1310.
MA CUI, YE Yujuan, YAN Xingke. Research progress on the neural circuit of pain emotion mediated by amygdala[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(10): 1304-1310.
1 | RAJA S N, CARR D B, COHEN M, et al. The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises[J]. Pain, 2020, 161(9): 1976-1982. |
2 | 张海艳, 朱怡霖, 吴泽民, 等. 痛情绪相关神经递质的研究进展[J]. 中国药理学与毒理学杂志, 2020, 34(6): 460-465. |
ZHANG H Y, ZHU Y L, WU Z M, et al. Research progress on neurotransmitters related to pain emotion [J]. Chinese Journal of Pharmacology and Toxicology, 2020, 34(6): 460-465. | |
3 | 方剑乔, 邵晓梅. 针刺镇痛的新思路: 针灸参与疼痛多维度调节的可行性[J]. 针刺研究, 2017, 42(1): 85-89. |
FANG J Q, SHAO X M. A new approach to acupuncture analgesia: the feasibility of acupuncture and moxibustion participating in multi-dimensional pain regulation[J]. Acupuncture Research, 2017, 42(1): 85-89. | |
4 | HUMO M, LU H, YALCIN I. The molecular neurobiology of chronic pain-induced depression[J]. Cell Tissue Res, 2019, 377(1): 21-43. |
5 | NEUGEBAUER V, MAZZITELLI M, CRAGG B, et al. Amygdala, neuropeptides, and chronic pain-related affective behaviors[J]. Neuropharmacology, 2020, 170: 108052. |
6 | CHEN W H, LIEN C C, CHEN C C. Neuronal basis for pain-like and anxiety-like behaviors in the central nucleus of the amygdala[J]. Pain, 2022, 163(3): e463-e475. |
7 | 吴叶琪, 项亚楠, 房军帆, 等. 杏仁核NPS/NPSR神经肽系统参与痛情绪过程的研究进展[J]. 浙江中医药大学学报, 2019, 43(3)286-290. |
WU Y Q, XIANG Y A, FANG J F, et al. Research progress on the involvement of amygdala NPS/NPSR neuropeptide system in pain emotion process [J]. Journal of Zhejiang Chinese Medical University, 2019, 43(3): 286-290. | |
8 | 赵炜楠, 胡苏皖, 翟晓静, 等. 中脑多巴胺奖赏系统与疼痛调控[J]. 中国疼痛医学杂志, 2021, 27(1): 20-30. |
ZHAO W N, HU S W, ZHAI X J, et al. Midbrain dopamine reward system and pain regulation [J]. Chinese Journal of Pain Medicine, 2021, 27(1): 20-30. | |
9 | GILPIN N W, HERMAN M A, ROBERTO M. The central amygdala as an integrative hub for anxiety and alcohol use disorders[J]. Biol Psychiatry, 2015, 77(10): 859-869. |
10 | HÁJOS N. Interneuron types and their circuits in the basolateral amygdala[J]. Front Neural Circuits, 2021, 15: 687257. |
11 | KRABBE S, GRÜNDEMANN J, LÜTHI A. Amygdala inhibitory circuits regulate associative fear conditioning[J]. Biol Psychiatry, 2018, 83(10): 800-809. |
12 | ALLEN H N, BOBNAR H J, KOLBER B J. Left and right hemispheric lateralization of the amygdala in pain[J]. Prog Neurobiol, 2021, 196: 101891. |
13 | CORDER G, AHANONU B, GREWE B F, et al. An amygdalar neural ensemble that encodes the unpleasantness of pain[J]. Science, 2019, 363(6424): 276-281. |
14 | 申采薇, 徐玉英, 游言文. 催产素对抑郁症模型大鼠中央杏仁核中催产素受体表达的影响[J]. 解剖学研究, 2022, 44(2): 139-145. |
SHEN C W, XU Y Y, YOU Y W. The effect of oxytocin on the expression of oxytocin receptor in the central amygdala of depression model rats[J]. Anatomy Research, 2022, 44(2): 139-145. | |
15 | DURIEUX L, HERBEAUX K, BORCUK C, et al. Functional brain-wide network mapping during acute stress exposure in rats: interaction between the lateral habenula and cortical, amygdalar, hypothalamic and monoaminergic regions[J]. Eur J Neurosci, 2022, 56(8): 5154-5176. |
16 | 陈栋洋, 韩庆荣, 盛海燕. 脊髓以上水平疼痛相关神经通路机制的研究进展[J].生理学报, 2023, 75(3): 475-485. |
CHEN D Y, HAN Q R, SHENG H Y. Research progress of Neural pathway mechanism related to pain above spinal cord level [J]. Journal of Physiology, 2023, 75(3): 475-485. | |
17 | YANG L, DONG F, YANG Q, et al. FGF13 selectively regulates heat nociception by interacting with Nav1.7[J]. Neuron, 2017, 93(4): 806-821.e9. |
18 | DONG X W, LI S, KIROUAC G J. Collateralization of projections from the paraventricular nucleus of the thalamus to the nucleus accumbens, bed nucleus of the stria terminalis, and central nucleus of the amygdala[J]. Brain Struct Funct, 2017, 222(9): 3927-3943. |
19 | ZHU X, ZHOU W J, JIN Y, et al. A central amygdala input to the parafascicular nucleus controls comorbid pain in depression[J]. Cell Rep, 2019, 29(12): 3847-3858.e5. |
20 | 吴媛媛, 蒋永亮, 邵晓梅, 等. 痛抑郁二联征模型大鼠中缝背核不同水平5-羟色胺表达差异[J]. 解剖学报, 2015, 46(2): 170-174. |
WU Y Y, JIANG Y L, SHAO X M, et al. Differences in 5-hydroxytryptamine expression at different levels in the dorsal raphe nucleus of rats with pain depression syndrome [J]. Journal of Anatomy, 2015, 46(2): 170-174. | |
21 | 崔玥, 黄文烨, 孟凡成, 等. 中缝背核5-羟色胺能神经环路在慢性痛及焦虑共病中的研究进展[J/OL]. 空军军医大学学报: 1-10 [2023-11-10]. http://kns.cnki.net/kcms/detail/61.1526.R.20230526. 1634.002.html. |
CUI Y, HUANG W Y, MENG F C, et al. Research progress on the 5-hydroxytryptaminergic neural circuit of the dorsal raphe nucleus in chronic pain and anxiety comorbidities[J/OL]. Journal of Air Force Military Medical University: 1-10 [2023-06-27]. http://kns.cnki.net/kcms/detail/61.1526.R.20230526.1634.002.html. | |
22 | MARCINKIEWCZ C A, MAZZONE C M, D'AGOSTINO G, et al. Serotonin engages an anxiety and fear-promoting circuit in the extended amygdala[J]. Nature, 2016, 537(7618): 97-101. |
23 | PAQUELET G E, CARRION K, LACEFIELD C O, et al. Single-cell activity and network properties of dorsal raphe nucleus serotonin neurons during emotionally salient behaviors[J]. Neuron, 2022, 110(16): 2664-2679.e8. |
24 | YU X D, ZHU Y, SUN Q X, et al. Distinct serotonergic pathways to the amygdala underlie separate behavioral features of anxiety[J]. Nat Neurosci, 2022, 25(12): 1651-1663. |
25 | REN J, FRIEDMANN D, XIONG J, et al. Anatomically defined and functionally distinct dorsal raphe serotonin sub-systems[J]. Cell, 2018, 175(2): 472-487.e20. |
26 | ZHOU W J, JIN Y, MENG Q, et al. The neural circuit of depression associated with chronic pain [J]. Chinese Journal of Pain Medicine, 2019, 25(11): 808-810, 816. |
27 | MARTIN S L, POWER A, BOYLE Y, et al. 5-HT modulation of pain perception in humans[J]. Psychopharmacology, 2017, 234(19): 2929-2939. |
28 | MAO X H, CAI D D, LOU W. Music alleviates pain perception in depression mouse models by promoting the release of glutamate in the hippocampus of mice to act on GRIK5[J]. Nucleosides Nucleotides Nucleic Acids, 2022, 41(5/6): 463-473. |
29 | ZHOU W J, JIN Y, MENG Q, et al. A neural circuit for comorbid depressive symptoms in chronic pain[J]. Nat Neurosci, 2019, 22(10): 1649-1658. |
30 | TOBALDINI G, SARDI N F, GUILHEN V A, et al. Pain inhibits pain: an ascending-descending pain modulation pathway linking mesolimbic and classical descending mechanisms[J]. Mol Neurobiol, 2019, 56(2): 1000-1013. |
31 | 杨澜, 陈理, 俞昌喜. 中脑导水管周围灰质腹外侧部星形胶质细胞对糖尿病神经病理性疼痛及痛相关负性情绪的调控作用[J]. 中国药理学与毒理学杂志, 2021, 35(9): 695. |
YANG L, CHEN L, YU C X. The regulation of astrocyte in the ventrolateral part of the midbrain periaqueductal gray on neuropathic pain and pain related negative emotions in diabetes [J]. Chinese Journal of Pharmacology and Toxicology, 2021, 35(9): 695. | |
32 | 雷晓露, 杨业, 肖智. 中脑导水管周围灰质调节行为、情绪作用的研究进展[J]. 中华神经医学杂志, 2019, 18(10): 1070-1075. |
LEI X L, YANG Y, XIAO Z. Research progress on the role of midbrain periaqueductal gray in regulating behavior and emotion [J]. Chinese Journal of Neuromedicine, 2019, 18(10): 1070-1075. | |
33 | SAMINENI V K, GRAJALES-REYES J G, COPITS B A, et al. Divergent modulation of nociception by glutamatergic and GABAergic neuronal subpopulations in the periaqueductal gray[J]. eNeuro, 2017, 4(2): ENEURO.0129-ENEURO.0116.2017. |
34 | 田津. 基于静息态fMRI研究针刺对原发性痛经患者PAG脑功能连接网络的影响[D]. 成都: 成都中医药大学, 2020. |
TIAN J. A study on the PAG brain function connect network in primary dysmenorrhea patients based on resting state fMRI[D]. Chengdu: Chengdu University of Traditional Chinese Medicine, 2020. | |
35 | 卢波, 黄娅琴, 雷卫平, 等. 导水管周围灰质注射zeta假底物抑制肽对大鼠疼痛感觉和疼痛情绪的影响[J].中华医学杂志, 2015, 95(6):444-448. |
LU B, HUANG Y Q, LEI W P, et al. Effects of zeta pseudosubstrate inhibitory peptide injected into periaqueductal gray on pain sensation and pain emotion in rats[J]. Chinese Medical Journal, 2015, 95(6): 444-448. | |
36 | HO Y C, LIN T B, HSIEH M C, et al. Periaqueductal gray glutamatergic transmission governs chronic stress-induced depression[J]. Neuropsychopharmacology, 2018, 43(2): 302-312. |
37 | SUN Y, BLANCO-CENTURION C, ZOU B Y, et al. Amygdala GABA neurons project to vlPAG and mPFC[J]. IBRO Rep, 2019, 6: 132-136. |
38 | CANTU D J, KAUR S, MURPHY A Z, et al. Sex differences in the amygdaloid projections to the ventrolateral periaqueductal gray and their activation during inflammatory pain in the rat[J]. J Chem Neuroanat, 2022, 124: 102123. |
39 | TRUINI A, TINELLI E, GERARDI M C, et al. Abnormal resting state functional connectivity of the periaqueductal grey in patients with fibromyalgia[J]. Clin Exp Rheumatol, 2016, 34(2 Suppl 96): S129-S133. |
40 | MEIER M L, STÄMPFLI P, HUMPHREYS B K, et al. The impact of pain-related fear on neural pathways of pain modulation in chronic low back pain[J]. Pain Rep, 2017, 2(3): e601. |
41 | YIN W W, MEI L S, SUN T T, et al. A central amygdala-ventrolateral periaqueductal gray matter pathway for pain in a mouse model of depression-like behavior[J]. Anesthesiology, 2020, 132(5): 1175-1196. |
42 | POULIN J F, CARONIA G, HOFER C, et al. Mapping projections of molecularly defined dopamine neuron subtypes using intersectional genetic approaches[J]. Nat Neurosci, 2018, 21(9): 1260-1271. |
43 | MARKOVIC T, PEDERSEN C E, MASSALY N, et al. Pain induces adaptations in ventral tegmental area dopamine neurons to drive anhedonia-like behavior[J]. Nat Neurosci, 2021, 24(11): 1601-1613. |
44 | 李永丰, 钱召强. 慢性神经痛对中脑腹侧被盖区多巴胺神经元活动水平的影响[J]. 中国疼痛医学杂志, 2018, 24(11): 815-822. |
LI Y F, QIAN Z Q. The effect of chronic neuralgia on the activity of dopamine neurons in the ventral tegmental area of the midbrain [J]. Chinese Journal of Pain Medicine, 2018, 24 (11): 815-822. | |
45 | FRIEDMAN A K, WALSH J J, JUAREZ B, et al. Enhancing depression mechanisms in midbrain dopamine neurons achieves homeostatic resilience[J]. Science, 2014, 344(6181): 313-319. |
46 | ZHANG L D, WANG J, NIU C X, et al. Activation of parabrachial nucleus-ventral tegmental area pathway underlies the comorbid depression in chronic neuropathic pain in mice[J]. Cell Rep, 2021, 37(5): 109936. |
47 | DE JONG J W, AFJEI S A, DOROCIC I P, et al. A neural circuit mechanism for encoding aversive stimuli in the mesolimbic dopamine system[J]. Neuron, 2019, 101(1): 133-151.e7. |
48 | 刘风雨. 中脑奖赏环路中的BDNF参与慢性神经病理性疼痛的发病机制[J]. 中国疼痛医学杂志, 2017, 23(9): 647. |
LIU F Y. The involvement of BDNF in the reward circuit of the midbrain in the pathogenesis of chronic neuropathic pain[J]. Chinese Journal of Pain Medicine, 2017, 23(9): 647. | |
49 | MOREL C, MONTGOMERY S E, LI L, et al. Midbrain projection to the basolateral amygdala encodes anxiety-like but not depression-like behaviors[J]. Nat Commun, 2022, 13(1): 1532. |
50 | CASEY E, AVALE M E, KRAVITZ A, et al. Dopaminergic innervation at the central nucleus of the amygdala reveals distinct topographically segregated regions[J]. Brain Struct Funct, 2023, 228(2): 663-675. |
51 | 陈丹丹, 周瑜, 翟晓静, 等. 基于光遗传学与化学遗传学技术的疼痛脑环路研究进展[J]. 中国疼痛医学杂志, 2022, 28(1): 7-20. |
CHEN D D, ZHOU Y, ZHAI X J, et al. Research progress of pain brain circuit based on optogenetics and chemical genetics[J]. Chinese Journal of Pain Medicine, 2022, 28(1): 7-20. | |
52 | 黄敏杰. 多巴胺D2受体介导中脑腹侧被盖区-中央杏仁核通路参与疼痛缓解的机制研究[D]. 郑州: 郑州大学, 2020. |
HUANG M J. The mechanism of dopamine D2 receptor mediated midbrain ventral tegmental area central amygdala pathway in pain relief[D]. Zhengzhou: Zhengzhou University, 2020. | |
53 | KIM B, YOON S, NAKAJIMA R, et al. Dopamine D2 receptor-mediated circuit from the central amygdala to the bed nucleus of the stria terminalis regulates impulsive behavior[J]. Proc Natl Acad Sci USA, 2018, 115(45): E10730-E10739. |
54 | MENG Q Y, GARCIA-GARCIA A L, DRANOVSKY A, et al. Inhibition of norepinephrine signaling during a sensitive period disrupts locus coeruleus circuitry and emotional behaviors in adulthood[J]. Sci Rep, 2023, 13(1): 3077. |
55 | HIRSCHBERG S, LI Y, RANDALL A, et al. Functional dichotomy in spinal- vs prefrontal-projecting locus coeruleus modules splits descending noradrenergic analgesia from ascending aversion and anxiety in rats[J]. eLife, 2017, 6: e29808. |
56 | LI J, WEI Y Y, ZHOU J L, et al. Activation of locus coeruleus-spinal cord noradrenergic neurons alleviates neuropathic pain in mice via reducing neuroinflammation from astrocytes and microglia in spinal dorsal horn[J]. J Neuroinflammation, 2022, 19(1): 123. |
57 | LLORCA-TORRALBA M, SUÁREZ-PEREIRA I, BRAVO L, et al. Chemogenetic silencing of the locus coeruleus-basolateral amygdala pathway abolishes pain-induced anxiety and enhanced aversive learning in rats[J]. Biol Psychiatry, 2019, 85(12): 1021-1035. |
58 | HUMO M, LU H, YALCIN I. The molecular neurobiology of chronic pain-induced depression[J]. Cell Tissue Res, 2019, 377(1): 21-43. |
59 | LI J, TIAN C, YUAN S, et al. Neuropathic pain following spinal cord hemisection induced by the reorganization in primary somatosensory cortex and regulated by neuronal activity of lateral parabrachial nucleus[J]. CNS Neurosci Ther, 2023, 29(11): 3269-3289. |
60 | CAMPOS C A, BOWEN A J, ROMAN C W, et al. Encoding of danger by parabrachial CGRP neurons[J]. Nature, 2018, 555(7698): 617-622. |
61 | PALMITER R D. The parabrachial nucleus: CGRP neurons function as a general alarm[J]. Trends Neurosci, 2018, 41(5): 280-293. |
62 | CHIANG M C, NGUYEN E K, CANTO-BUSTOS M, et al. Divergent neural pathways emanating from the lateral parabrachial nucleus mediate distinct components of the pain response[J]. Neuron, 2020, 106(6): 927-939.e5. |
63 | HAN S, SOLEIMAN M T, SODEN M E, et al. Elucidating an affective pain circuit that creates a threat memory[J]. Cell, 2015, 162(2): 363-374. |
64 | 尹俊滨. 背内侧前额叶皮层对慢性痛的下行调控作用及其机制[D].西安: 第四军医大学, 2017. |
YIN J B The descending regulatory effect and mechanism of the dorsomedial prefrontal cortex on chronic pain[D]. Xi'an: Fourth Military Medical University, 2017. |
[1] | 卢启帆, 刘启明, 周红梅, 柴烨子, 姜萌, 卜军. 慢性心力衰竭患者躯体化症状、焦虑、抑郁对临床结局的影响[J]. 上海交通大学学报(医学版), 2023, 43(9): 1153-1161. |
[2] | 王晓玉, 彭银辉, 马文琳, 姚博爽, 李一凡, 赵莉, 杨春霞. 新冠疫情大流行期间儿童及青少年新发焦虑症状的纵向研究[J]. 上海交通大学学报(医学版), 2023, 43(8): 963-970. |
[3] | 马文琳, 林元杰, 金婷婷, 石薇, 蒋莉华, 赵莉. 初中生自我中心主义与非自杀性自伤的关系研究[J]. 上海交通大学学报(医学版), 2023, 43(8): 971-976. |
[4] | 张硕渊, 李春波. 运动治疗抑郁障碍的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(7): 916-922. |
[5] | 何璐瑶, 黄东萍, 邵孟孟, 张凯, 任百慧, 孔庆丹, 徐天乐, 吕江腾. 内侧前额叶皮层-基底外侧杏仁核投射神经元分层亚群的解剖学研究[J]. 上海交通大学学报(医学版), 2022, 42(9): 1216-1224. |
[6] | 王亚琨, 许佳瑞, 吴茜茜, 张晓华, 朱迎春, 白寿军. 医养结合综合干预对上海郊区老年慢性肾脏病患者生活质量和精神状态的影响[J]. 上海交通大学学报(医学版), 2022, 42(7): 904-910. |
[7] | 吴侠霏, 方婕, 漆洪波, 余昕烊. 妊娠期糖尿病对C57BL/6J子代成年鼠神经精神功能的影响[J]. 上海交通大学学报(医学版), 2022, 42(4): 422-432. |
[8] | 李欣, 范青. 机器学习在抑郁症患者面部特征研究中的应用进展[J]. 上海交通大学学报(医学版), 2022, 42(1): 124-129. |
[9] | 沈梦婷, 张选红, 钱禛颖, 李惠, 盛建华, 王继军, 唐莺莹. 精神分裂症与抑郁症失匹配负波异常的对照研究[J]. 上海交通大学学报(医学版), 2021, 41(8): 1041-1045. |
[10] | 耿瑞杰, 姚琳, 黄欣欣, 禹顺英, 苑成梅, 洪武, 吕钦谕, 王庆中, 易正辉, 方贻儒. 基于加权基因共表达网络分析识别抑郁症的差异表达基因模块[J]. 上海交通大学学报(医学版), 2021, 41(6): 724-731. |
[11] | 张小小, 张陈诚, 赖伊杰, 孙伯民. 丘脑底核脑深部电刺激术对帕金森病合并抑郁影响的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(6): 815-820. |
[12] | 杨平原, 江海峰, 赵敏. 成瘾物质线索反应性及其神经机制的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(3): 376-379. |
[13] | 吴静, 李学义, 陈京红, 王泽剑. 抑郁模型小鼠海马中胆汁酸受体变化的研究[J]. 上海交通大学学报(医学版), 2021, 41(12): 1628-1634. |
[14] | 沈琳洁, 黄雨欣, 王勇, 金华. 非侵入性脑刺激在抑郁障碍躯体症状治疗中的应用综述[J]. 上海交通大学学报(医学版), 2021, 41(11): 1535-1539. |
[15] | 施波, 陈建民, 赵俊雄, 唐伟, 范卫星, 张程赪, 张晨. CREB1基因与抑郁症和双相Ⅱ型障碍的关联研究[J]. 上海交通大学学报(医学版), 2021, 41(10): 1303-1307. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||