上海交通大学学报(医学版) ›› 2024, Vol. 44 ›› Issue (5): 626-634.doi: 10.3969/j.issn.1674-8115.2024.05.011
• 综述 • 上一篇
收稿日期:
2023-11-26
接受日期:
2024-04-07
出版日期:
2024-05-28
发布日期:
2024-05-28
通讯作者:
罗艳
E-mail:984809951@qq.com;ly11087@rjh.com.cn
作者简介:
宋一凡(1998—),男,硕士生;电子信箱:984809951@qq.com。
基金资助:
SONG Yifan1(), JIANG Linhao2, YANG Qianzi2, LUO Yan1,2()
Received:
2023-11-26
Accepted:
2024-04-07
Online:
2024-05-28
Published:
2024-05-28
Contact:
LUO Yan
E-mail:984809951@qq.com;ly11087@rjh.com.cn
Supported by:
摘要:
右美托咪定是一种α2肾上腺素受体激动剂,具有镇静、镇痛、抗焦虑、抗交感神经的作用,目前已经成为临床麻醉和重症监护室广泛应用的药物。相比于麻醉科其他药物,右美托咪定没有明显的呼吸抑制作用且没有明显的血流动力学改变,且与其他麻醉药配伍可明显减少镇静镇痛药物的用量。在临床应用中发现,右美托咪定可以介导可唤醒的镇静效应。传统认为右美托咪定通过α2肾上腺素受体发挥作用,可以发挥降低血压、舒张血管和降低心率的作用,但对于其如何影响脑内神经环路尚不清楚。近年来关于右美托咪定作用机制的研究逐渐增多,证实下丘脑腹外侧视前区(ventrolateral preoptic nucleus,VLPO)、蓝斑核(locus coeruleus,LC)、中脑腹侧被盖区(ventral tegmental area,VTA)等核团参与其介导的镇静作用,背根神经节(dorsal root ganglion,DRG)、颈上神经节(superior cervical ganglion,SCG)参与其介导的镇痛作用,下丘脑视前区(preoptic area,PO)和下丘脑室旁核(paraventricular nucleus,PVN)参与其介导的体温和水电解质平衡的变化,为理解右美托咪定在中枢神经系统的作用机制提供了新的方向。
中图分类号:
宋一凡, 江林昊, 杨谦梓, 罗艳. 右美托咪定的中枢神经作用机制研究进展[J]. 上海交通大学学报(医学版), 2024, 44(5): 626-634.
SONG Yifan, JIANG Linhao, YANG Qianzi, LUO Yan. Research progress in the central nervous system mechanism of dexmedetomidine[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(5): 626-634.
1 | CHIMA A M, MAHMOUD M A, NARAYANASAMY S. What is the role of dexmedetomidine in modern anesthesia and critical care?[J]. Adv Anesth, 2022, 40(1): 111-130. |
2 | EBERT T J, HALL J E, BARNEY J A, et al. The effects of increasing plasma concentrations of dexmedetomidine in humans[J]. Anesthesiology, 2000, 93(2): 382-394. |
3 | DE ZEN L, DIVISIC A, MOLINARO G, et al. Dexmedetomidine at home for intractable dystonia and insomnia in children with special needs: a case series[J]. J Pain Symptom Manage, 2023, 66(6): e653-e657. |
4 | MOON E J, KO I G, KIM S E, et al. Dexmedetomidine ameliorates sleep deprivation-induced depressive behaviors in mice[J]. Int Neurourol J, 2018, 22(Suppl 3): S139-S146. |
5 | HWANG L, KO I G, JIN J J, et al. Dexmedetomidine ameliorates memory impairment in sleep-deprived mice[J]. Anim Cells Syst (Seoul), 2019, 23(6): 371-379. |
6 | ZHAI Q, ZHANG Y, YE M, et al. Reducing complement activation during sleep deprivation yields cognitive improvement by dexmedetomidine[J]. Br J Anaesth, 2023, 131(3): 542-555. |
7 | RUFFOLO R R Jr. Interactions of agonists with peripheral alpha-adrenergic receptors[J]. Fed Proc, 1984, 43(14): 2910-2916. |
8 | MOLINOFF P B. Alpha- and beta-adrenergic receptor subtypes properties, distribution and regulation[J]. Drugs, 1984, 28(Suppl 2): 1-15. |
9 | NELSON L E, LU J, GUO T Z, et al. The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects[J]. Anesthesiology, 2003, 98(2): 428-436. |
10 | IHMSEN H, SAARI T I. Dexmedetomidin[J]. Der Anaesthesist, 2012, 61(12): 1059-1066. |
11 | SZUMITA P M, BAROLETTI S A, ANGER K E, et al. Sedation and analgesia in the intensive care unit: evaluating the role of dexmedetomidine[J]. Am J Health Syst Pharm, 2007, 64(1): 37-44. |
12 | NACIF-COELHO C, CORREA-SALES C, CHANG L L, et al. Perturbation of ion channel conductance alters the hypnotic response to the alpha 2-adrenergic agonist dexmedetomidine in the locus coeruleus of the rat[J]. Anesthesiology, 1994, 81(6): 1527-1534. |
13 | KEATING G M. Dexmedetomidine: a review of its use for sedation in the intensive care setting[J]. Drugs, 2015, 75(10): 1119-1130. |
14 | BARENDS C R M, ABSALOM A, VAN MINNEN B, et al. Dexmedetomidine versus midazolam in procedural sedation. A systematic review of efficacy and safety[J]. PLoS One, 2017, 12(1): e0169525. |
15 | BENARROCH E E. Locus coeruleus[J]. Cell Tissue Res, 2018, 373(1): 221-232. |
16 | SCHWARZ L A, LUO L Q. Organization of the locus coeruleus-norepinephrine system[J]. Curr Biol, 2015, 25(21): R1051-R1056. |
17 | CHIU T H, CHEN M J, YANG Y R, et al. Action of dexmedetomidine on rat locus coeruleus neurones: intracellular recording in vitro[J]. Eur J Pharmacol, 1995, 285(3): 261-268. |
18 | SONG A H, KUCYI A, NAPADOW V, et al. Pharmacological modulation of noradrenergic arousal circuitry disrupts functional connectivity of the locus ceruleus in humans[J]. J Neurosci, 2017, 37(29): 6938-6945. |
19 | VOGT B A, HOF P R, FRIEDMAN D P, et al. Norepinephrinergic afferents and cytology of the macaque monkey midline, mediodorsal, and intralaminar thalamic nuclei[J]. Brain Struct Funct, 2008, 212(6): 465-479. |
20 | AKEJU O, LOGGIA M L, CATANA C, et al. Disruption of thalamic functional connectivity is a neural correlate of dexmedetomidine-induced unconsciousness[J]. eLife, 2014, 3: 04499. |
21 | MORALES M, MARGOLIS E B. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour[J]. Nat Rev Neurosci, 2017, 18(2): 73-85. |
22 | WALSH J J, HAN M H. The heterogeneity of ventral tegmental area neurons: projection functions in a mood-related context[J]. Neuroscience, 2014, 282: 101-108. |
23 | EBAN-ROTHSCHILD A, ROTHSCHILD G, GIARDINO W J, et al. VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors[J]. Nat Neurosci, 2016, 19(10): 1356-1366. |
24 | FIFEL K, MEIJER J H, DEBOER T. Circadian and homeostatic modulation of multi-unit activity in midbrain dopaminergic structures[J]. Sci Rep, 2018, 8(1): 7765. |
25 | YANG Q Z, ZHOU F, LI A, et al. Neural substrates for the regulation of sleep and general anesthesia[J]. Curr Neuropharmacol, 2022, 20(1): 72-84. |
26 | TAYLOR N, CHEMALI J, BROWN E, et al. Activation of D1 dopamine receptors induces emergence from isoflurane general anesthesia[J]. Anesthesiology, 2013, 118(1): 30-39. |
27 | QIU G L, WU Y, YANG Z Y, et al. Dexmedetomidine activation of dopamine neurons in the ventral tegmental area attenuates the depth of sedation in mice[J]. Anesthesiology, 2020, 133(2): 377-392. |
28 | BURBRIDGE S, STEWART I, PLACZEK M. Development of the neuroendocrine hypothalamus[J]. Compr Physiol, 2016, 6(2): 623-643. |
29 | FLAMENT-DURAND J. The hypothalamus: anatomy and functions[J]. Acta Psychiatr Belg, 1980, 80(4): 364-375. |
30 | LU J, GRECO M A, SHIROMANI P, et al. Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep[J]. J Neurosci, 2000, 20(10): 3830-3842. |
31 | GALLOPIN T, FORT P, EGGERMANN E, et al. Identification of sleep-promoting neurons in vitro[J]. Nature, 2000, 404(6781): 992-995. |
32 | GAUS S E, STRECKER R E, TATE B A, et al. Ventrolateral preoptic nucleus contains sleep-active, galaninergic neurons in multiple mammalian species[J]. Neuroscience, 2002, 115(1): 285-294. |
33 | ARRIGONI E, FULLER P M. The sleep-promoting ventrolateral preoptic nucleus: what have we learned over the past 25 years?[J]. Int J Mol Sci, 2022, 23(6): 2905. |
34 | ZHANG Z, FERRETTI V, GÜNTAN İ, et al. Neuronal ensembles sufficient for recovery sleep and the sedative actions of α2 adrenergic agonists[J]. Nat Neurosci, 2015, 18(4): 553-561. |
35 | ILYAS A, PIZARRO D, ROMEO A K, et al. The centromedian nucleus: anatomy, physiology, and clinical implications[J]. J Clin Neurosci, 2019, 63: 1-7. |
36 | TSUTSUMI Y, MIZUNO Y, HAQUE T, et al. Widespread corticopetal projections from the oval paracentral nucleus of the intralaminar thalamic nuclei conveying orofacial proprioception in rats[J]. Brain Struct Funct, 2021, 226(4): 1115-1133. |
37 | SAPER C B, FULLER P M, PEDERSEN N P, et al. Sleep state switching[J]. Neuron, 2010, 68(6): 1023-1042. |
38 | BAKER R, GENT T C, YANG Q Z, et al. Altered activity in the central medial thalamus precedes changes in the neocortex during transitions into both sleep and propofol anesthesia[J]. J Neurosci, 2014, 34(40): 13326-13335. |
39 | YAMAKITA S, MATSUDA M, YAMAGUCHI Y, et al. Dexmedetomidine prolongs levobupivacaine analgesia via inhibition of inflammation and p38 MAPK phosphorylation in rat dorsal root ganglion[J]. Neuroscience, 2017, 361: 58-68. |
40 | REBOLLAR R E, GARCÍA PALACIOS M V, FERNÁNDEZ RIOBÓ M C, et al. Dexmedetomidine and perioperative analgesia in children[J]. Rev Esp Anestesiol Reanim (Engl Ed), 2022, 69(8): 487-492. |
41 | GRAPE S, KIRKHAM K R, FRAUENKNECHT J, et al. Intra-operative analgesia with remifentanil vs. dexmedetomidine: a systematic review and meta-analysis with trial sequential analysis[J]. Anaesthesia, 2019, 74(6): 793-800. |
42 | YEN C T, LU P L. Thalamus and pain[J]. Acta Anaesthesiol Taiwan, 2013, 51(2): 73-80. |
43 | SCHOLZ J, WOOLF C J. The neuropathic pain triad: neurons, immune cells and glia[J]. Nat Neurosci, 2007, 10(11): 1361-1368. |
44 | ZHU X, TANG H D, DONG W Y, et al. Distinct thalamocortical circuits underlie allodynia induced by tissue injury and by depression-like states[J]. Nat Neurosci, 2021, 24(4): 542-553. |
45 | ARAKAWA H, SUZUKI A, ZHAO S X, et al. Thalamic NMDA receptor function is necessary for patterning of the thalamocortical somatosensory map and for sensorimotor behaviors[J]. J Neurosci, 2014, 34(36): 12001-12014. |
46 | BORDI F, QUARTAROLI M. Modulation of nociceptive transmission by NMDA/glycine site receptor in the ventroposterolateral nucleus of the thalamus[J]. Pain, 2000, 84(2/3): 213-224. |
47 | WU L J, ZHUO M. Targeting the NMDA receptor subunit NR2B for the treatment of neuropathic pain[J]. Neurotherapeutics, 2009, 6(4): 693-702. |
48 | CHEN J Y, LI H J, LIM G, et al. Different effects of dexmedetomidine and midazolam on the expression of NR2B and GABAA-α1 following peripheral nerve injury in rats[J]. IUBMB Life, 2018, 70(2): 143-152. |
49 | YOU H J, LEI J, XIAO Y, et al. Pre-emptive analgesia and its supraspinal mechanisms: enhanced descending inhibition and decreased descending facilitation by dexmedetomidine[J]. J Physiol, 2016, 594(7): 1875-1890. |
50 | ZHANG Z J, GUO J S, LI S S, et al. TLR8 and its endogenous ligand miR-21 contribute to neuropathic pain in murine DRG[J]. J Exp Med, 2018, 215(12): 3019-3037. |
51 | BERTA T, QADRI Y, TAN P H, et al. Targeting dorsal root ganglia and primary sensory neurons for the treatment of chronic pain[J]. Expert Opin Ther Targets, 2017, 21(7): 695-703. |
52 | ZHANG L, XIE R G, YANG J P, et al. Chronic pain induces nociceptive neurogenesis in dorsal root ganglia from Sox2-positive satellite cells[J]. Glia, 2019, 67(6): 1062-1075. |
53 | BIEL M, WAHL-SCHOTT C, MICHALAKIS S, et al. Hyperpolarization-activated cation channels: from genes to function[J]. Physiol Rev, 2009, 89(3): 847-885. |
54 | 张芳, 古瑞, 冯亚星, 等. 右美托咪啶通过抑制超极化激活内向电流减轻机械性触诱发痛[J]. 生理学报, 2018, 70(3): 253-261. |
ZHANG F, GU R, FENG Y X, et al. Dexmedetomidine suppresses mechanical allodynia by inhibiting hyperpolarization-activated inward current[J]. Sheng Li Xue Bao, 2018, 70(3): 253-261. | |
55 | HEUSSER S A, PLESS S A. Acid-sensing ion channels as potential therapeutic targets[J]. Trends Pharmacol Sci, 2021, 42(12): 1035-1050. |
56 | DE LOGU F, GEPPETTI P. Ion channel pharmacology for pain modulation[J]. Handb Exp Pharmacol, 2019, 260: 161-186. |
57 | WAN Y, YU Y, PAN X X, et al. Inhibition on acid-sensing ion channels and analgesic activities of flavonoids isolated from dragon′s blood resin[J]. Phytother Res, 2019, 33(3): 718-727. |
58 | WEI S, QIU C Y, JIN Y, et al. Dexmedetomidine inhibits ASIC activity via activation of α2A adrenergic receptors in rat dorsal root ganglion neurons[J]. Front Pharmacol, 2021, 12: 685460. |
59 | SENGUL G, LIANG H Z, FURLONG T M, et al. Dorsal horn of mouse lumbar spinal cord imaged with CLARITY[J]. Biomed Res Int, 2020, 2020: 3689380. |
60 | HARDING E K, FUNG S W, BONIN R P. Insights into spinal dorsal horn circuit function and dysfunction using optical approaches[J]. Front Neural Circuits, 2020, 14: 31. |
61 | LI J, TANG H Z, TU W F. Mechanism of dexmedetomidine preconditioning on spinal cord analgesia in rats with functional chronic visceral pain[J]. Acta Cir Bras, 2022, 37(2): e370203. |
62 | LU Y C, LIN B H, ZHONG J M. The therapeutic effect of dexmedetomidine on rat diabetic neuropathy pain and the mechanism[J]. Biol Pharm Bull, 2017, 40(9): 1432-1438. |
63 | PANG J, ZHANG S M, KONG Y, et al. The effect of dexmedetomidine on expression of neuronal nitric oxide synthase in spinal dorsal cord in a rat model with chronic neuropathic pain[J]. Arq Neuropsiquiatr, 2023, 81(3): 233-239. |
64 | JÄNIG W, HÄBLER H J. Neurophysiological analysis of target-related sympathetic pathways: from animal to human: similarities and differences[J]. Acta Physiol Scand, 2003, 177(3): 255-274. |
65 | YANG L, TANG J, DONG J, et al. Alpha2-adrenoceptor-independent inhibition of acetylcholine receptor channel and sodium channel by dexmedetomidine in rat superior cervical ganglion neurons[J]. Neuroscience, 2015, 289: 9-18. |
66 | BRUMMETT C M, HONG E K, JANDA A M, et al. Perineural dexmedetomidine added to ropivacaine for sciatic nerve block in rats prolongs the duration of analgesia by blocking the hyperpolarization-activated cation current[J]. Anesthesiology, 2011, 115(4): 836-843. |
67 | MARHOFER D, KETTNER S C, MARHOFER P, et al. Dexmedetomidine as an adjuvant to ropivacaine prolongs peripheral nerve block: a volunteer study[J]. Br J Anaesth, 2013, 110(3): 438-442. |
68 | WANG Z H, ZHOU W, DONG H P, et al. Dexmedetomidine pretreatment inhibits cerebral ischemia/reperfusion-induced neuroinflammation via activation of AMPK[J]. Mol Med Rep, 2018, 18(4): 3957-3964. |
69 | ZHANG Y Z, ZHOU Z C, SONG C Y, et al. The protective effect and mechanism of dexmedetomidine on diabetic peripheral neuropathy in rats[J]. Front Pharmacol, 2020, 11: 1139. |
70 | HU B, TIAN T, LI X T, et al. Dexmedetomidine postconditioning attenuates myocardial ischemia/reperfusion injury by activating the Nrf2/Sirt3/SOD2 signaling pathway in the rats[J]. Redox Rep, 2023, 28(1): 2158526. |
71 | LIN S, ZHOU G L, SHAO W, et al. Impact of dexmedetomidine on amino acid contents and the cerebral ultrastructure of rats with cerebral ischemia-reperfusion injury[J]. Acta Cir Bras, 2017, 32(6): 459-466. |
72 | ZHU Y L, LI S H, LIU J Y, et al. Role of JNK signaling pathway in dexmedetomidine post-conditioning-induced reduction of the inflammatory response and autophagy effect of focal cerebral ischemia reperfusion injury in rats[J]. Inflammation, 2019, 42(6): 2181-2191. |
73 | FENG X Y, MA W W, ZHU J, et al. Dexmedetomidine alleviates early brain injury following traumatic brain injury by inhibiting autophagy and neuroinflammation through the ROS/Nrf2 signaling pathway[J]. Mol Med Rep, 2021, 24(3): 661. |
74 | YANG L, WU H Y, YANG F L, et al. Identification of candidate genes and pathways in dexmedetomidine-induced neuroprotection in rats using RNA sequencing and bioinformatics analysis[J]. Ann Palliat Med, 2021, 10(1): 372-384. |
75 | KNIERIM J J. The hippocampus[J]. Curr Biol, 2015, 25(23): R1116-R1121. |
76 | ENDESFELDER S, MAKKI H, VON HAEFEN C, et al. Neuroprotective effects of dexmedetomidine against hyperoxia-induced injury in the developing rat brain[J]. PLoS One, 2017, 12(2): e0171498. |
77 | CHEN X H, CHEN D T, LI Q, et al. Dexmedetomidine alleviates hypoxia-induced synaptic loss and cognitive impairment via inhibition of microglial NOX2 activation in the hippocampus of neonatal rats[J]. Oxid Med Cell Longev, 2021, 2021: 6643171. |
78 | CHANG M, CHO S A, LEE S J, et al. Comparison of the effects of dexmedetomidine and propofol on hypothermia in patients under spinal anesthesia: a prospective, randomized, and controlled trial[J]. Int J Med Sci, 2022, 19(5): 909-915. |
79 | MA Y, MIRACCA G, YU X, et al. Galanin neurons unite sleep homeostasis and α2-adrenergic sedation[J]. Curr Biol, 2019, 29(19): 3315-3322.e3. |
80 | BEGEMANN K, NEUMANN A M, OSTER H. Regulation and function of extra-SCN circadian oscillators in the brain[J]. Acta Physiol (Oxf), 2020, 229(1): e13446. |
81 | LIU D Q, LI J Y, WU J Y, et al. Monochromatic blue light activates suprachiasmatic nucleus neuronal activity and promotes arousal in mice under sevoflurane anesthesia[J]. Front Neural Circuits, 2020, 14: 55. |
82 | MIZUNO T, HIGO S, KAMEI N, et al. Effects of general anesthesia on behavioral circadian rhythms and clock-gene expression in the suprachiasmatic nucleus in rats[J]. Histochem Cell Biol, 2022, 158(2): 149-158. |
83 | XU A J, WAN L. Dexmedetomidine-induced polyuric syndrome and hypotension[J]. J Clin Anesth, 2018, 44: 8-9. |
84 | ZHU J, LU D, LIU J F. Intraoperative dexmedetomidine-related polyuria: a case report and review of the literature[J]. Int J Clin Pharmacol Ther, 2022, 60(4): 188-191. |
85 | RIVES J P, MILLET C, SCIARAFFA C, et al. Perioperative polyuria associated with dexmedetomidine administration during reconstruction breast surgery[J]. Anaesth Crit Care Pain Med, 2023, 42(5): 101290. |
86 | QIN C, LI J H, TANG K. The paraventricular nucleus of the hypothalamus: development, function, and human diseases[J]. Endocrinology, 2018, 159(9): 3458-3472. |
87 | MØLLER M. Vasopressin and oxytocin beyond the pituitary in the human brain[J]. Handb Clin Neurol, 2021, 180: 7-24. |
88 | YANG W Z, LI H, CHENG Z L, et al. Dex modulates the balance of water-electrolyte metabolism by depressing the expression of AVP in PVN[J]. Front Pharmacol, 2022, 13: 919032. |
[1] | 何山, 吕钦谕, 易正辉. 非自杀性自伤青少年执行功能障碍的研究进展[J]. 上海交通大学学报(医学版), 2024, 44(4): 518-524. |
[2] | 杨笑萱, 朱珊, 钱程, 储晓英. 术中使用小剂量右美托咪定对乳腺癌手术患者预后的影响[J]. 上海交通大学学报(医学版), 2023, 43(2): 194-200. |
[3] | 陈默曦, 许涛, 高晓云, 汪文英, 陈勇柱. 超声引导下臂丛复合肋间臂神经阻滞在肱骨远端骨折手术中的镇痛效果观察[J]. 上海交通大学学报(医学版), 2022, 42(5): 624-628. |
[4] | 张海燕, 储晓英. 非阿片类镇痛药应用在全身麻醉喉罩置入的乳腺癌保乳手术中的可行性[J]. 上海交通大学学报(医学版), 2021, 41(5): 637-641. |
[5] | 李璐宏, 罗艳. 术中瑞芬太尼持续泵注对胃肠术后镇痛的影响[J]. 上海交通大学学报(医学版), 2021, 41(4): 509-513. |
[6] | 许文音, 黄贞玲, 黄咏磊, 张瑞冬, 王璐, 张莺, 白洁, 郑吉建. 非线性混合效应模型基于异速生长方程拟合上下法实验数据确定儿童右美托咪定半数有效量[J]. 上海交通大学学报(医学版), 2021, 41(10): 1313-1317. |
[7] | 陈智灵, 罗晨, 赵康佳, 沈玲, 胡三莲. 2种镇痛方式在结直肠癌术后应用效果的meta分析[J]. 上海交通大学学报(医学版), 2021, 41(10): 1344-1350. |
[8] | 叶玉剑, 钟娜, 赵敏. 镇静催眠药物滥用及干预方式的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(1): 99-102. |
[9] | 季莹莹,薛 彬,黄 悦,张剑蔚. 小儿磁共振成像检查中咪达唑仑口服复合右美托咪定滴鼻镇静的安全性和有效性[J]. 上海交通大学学报(医学版), 2020, 40(8): 1098-1102. |
[10] | 徐 韬,郑 静,安小虎. 改良硬膜外导管用于分娩镇痛的临床研究[J]. 上海交通大学学报(医学版), 2020, 40(2): 219-. |
[11] | 陈黎明,于布为. 全身麻醉术中伤害性刺激监测的研究进展[J]. 上海交通大学学报(医学版), 2020, 40(2): 271-. |
[12] | 封洲,王坚伟,张虓宇,徐子锋. 右美托咪定复合罗哌卡因对于腹横筋膜阻滞时效的影响[J]. 上海交通大学学报(医学版), 2019, 39(5): 526-. |
[13] | 顾燕1,蔡孟1,宋云1,蒲才秀2. 右美托咪定复合舒芬太尼用于重度子痫前期剖宫产产妇术后自控静脉镇痛的研究[J]. 上海交通大学学报(医学版), 2018, 38(7): 784-. |
[14] | 于文娟 1*,朱敏2*,沃雁 3,余一旻 1,李妍 1,方洪伟 4,朱浩 4. 丙泊酚镇静对大鼠海马BDNF-TrkB/p75信号和认知功能的影响[J]. 上海交通大学学报(医学版), 2018, 38(6): 594-. |
[15] | 祝敏芳 1,余开颜 1,潘雁 2,杨敏 1. 胸外科患者术后纤维支气管镜吸痰镇静的随机双盲对照研究[J]. 上海交通大学学报(医学版), 2018, 38(11): 1343-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||