1 |
MATTHAY M A, ARABI Y, ARROLIGA A C, et al. A new global definition of acute respiratory distress syndrome[J]. Am J Respir Crit Care Med, 2024, 209(1): 37-47.
|
2 |
BOS L D J, WARE L B. Acute respiratory distress syndrome: causes, pathophysiology, and phenotypes[J]. Lancet, 2022, 400(10358): 1145-1156.
|
3 |
GROTBERG J C, REYNOLDS D, KRAFT B D. Management of severe acute respiratory distress syndrome: a primer[J]. Crit Care, 2023, 27(1): 289.
|
4 |
ZHANG K H, JULIUS D, CHENG Y F. Structural snapshots of TRPV1 reveal mechanism of polymodal functionality[J]. Cell, 2021, 184(20): 5138-5150.e12.
|
5 |
OZ M, LORKE D E, HOWARTH F C. Transient receptor potential vanilloid 1 (TRPV1)-independent actions of capsaicin on cellular excitability and ion transport[J]. Med Res Rev, 2023, 43(4): 1038-1067.
|
6 |
GORMAN E A, O'KANE C M, MCAULEY D F. Acute respiratory distress syndrome in adults: diagnosis, outcomes, long-term sequelae, and management[J]. Lancet, 2022, 400(10358): 1157-1170.
|
7 |
LIU L, WANG Y, ZHANG Y, et al. Comparison of the Montreux definition with the Berlin definition for neonatal acute respiratory distress syndrome[J]. Eur J Pediatr, 2023, 182(4): 1673-1684.
|
8 |
QADIR N, SAHETYA S, MUNSHI L, et al. An update on management of adult patients with acute respiratory distress syndrome: an official American Thoracic Society Clinical Practice Guideline[J]. Am J Respir Crit Care Med, 2024, 209(1): 24-36.
|
9 |
LU Q Y, YU S F, MENG X Y, et al. MicroRNAs: important regulatory molecules in acute lung injury/acute respiratory distress syndrome[J]. Int J Mol Sci, 2022, 23(10): 5545.
|
10 |
WANG K, RONG G Y, GAO Y X, et al. Fluorous-tagged peptide nanoparticles ameliorate acute lung injury via lysosomal stabilization and inflammation inhibition in pulmonary macrophages[J]. Small, 2022, 18(40): 2203432.
|
11 |
WANG K, WANG M Y, LIAO X M, et al. Locally organised and activated Fth1hi neutrophils aggravate inflammation of acute lung injury in an IL-10-dependent manner[J]. Nat Commun, 2022, 13: 7703.
|
12 |
CAO E H, LIAO M F, CHENG Y F, et al. TRPV1 structures in distinct conformations reveal activation mechanisms[J]. Nature, 2013, 504(7478): 113-118.
|
13 |
杨维杰, 骆媛, 王永安. 瞬时受体电位通道在呼吸系统疾病中的作用研究进展[J]. 中国药理学与毒理学杂志, 2021, 35(6): 471-480.
|
|
YANG W J, LUO Y, WANG Y A. Research progress in role of transient receptor potential channels in respiratory diseases[J]. Chinese Journal of Pharmacology and Toxicology, 2021, 35(6): 471-480.
|
14 |
GAO N, LI M, WANG W M, et al. A bibliometrics analysis and visualization study of TRPV1 channel[J]. Front Pharmacol, 2023, 14: 1076921.
|
15 |
KASHIO M, TOMINAGA M. TRP channels in thermosensation[J]. Curr Opin Neurobiol, 2022, 75: 102591.
|
16 |
ZHAO R, TSANG S Y. Versatile roles of intracellularly located TRPV1 channel[J]. J Cell Physiol, 2017, 232(8): 1957-1965.
|
17 |
BENÍTEZ-ANGELES M, MORALES-LÁZARO S L, JUÁREZ-GONZÁLEZ E, et al. TRPV1: structure, endogenous agonists, and mechanisms[J]. Int J Mol Sci, 2020, 21(10): 3421.
|
18 |
ENGLERT J A, BOBBA C, BARON R M. Integrating molecular pathogenesis and clinical translation in sepsis-induced acute respiratory distress syndrome[J]. JCI Insight, 2019, 4(2): e124061.
|
19 |
CAO S, LI H, XIN J, et al. Identification of genetic profile and biomarkers involved in acute respiratory distress syndrome[J]. Intensive Care Med, 2024, 50(1): 46-55.
|
20 |
HU Q, LIU H R, WANG R Y, et al. Capsaicin attenuates LPS-induced acute lung injury by inhibiting inflammation and autophagy through regulation of the TRPV1/AKT pathway[J]. J Inflamm Res, 2024, 17: 153-170.
|
21 |
WANG R, LI Q, WU P, et al. Fe-capsaicin nanozymes attenuate sepsis-induced acute lung injury via NF-κB signaling[J]. Int J Nanomedicine, 2024, 19: 73-90.
|
22 |
JOFFRE J, WONG E, LAWTON S, et al. N-Oleoyl dopamine induces IL-10 via central nervous system TRPV1 and improves endotoxemia and sepsis outcomes[J]. J Neuroinflammation, 2022, 19(1): 118.
|
23 |
ZHANG Q, LUO P, XIA F, et al. Capsaicin ameliorates inflammation in a TRPV1-independent mechanism by inhibiting PKM2-LDHA-mediated Warburg effect in sepsis[J]. Cell Chem Biol, 2022, 29(8): 1248-1259.e6.
|
24 |
LIU Z H, WANG P W, LU S S, et al. Liquiritin, a novel inhibitor of TRPV1 and TRPA1, protects against LPS-induced acute lung injury[J]. Cell Calcium, 2020, 88: 102198.
|
25 |
LIU Q H, ZHANG K, FENG S S, et al. Rosavin alleviates LPS-induced acute lung injure by modulating the TLR-4/NF-κB/MAPK singnaling pathways[J]. Int J Mol Sci, 2024, 25(3): 1875.
|
26 |
ZHOU M, MENG L, HE Q K, et al. Valsartan attenuates LPS-induced ALI by modulating NF-κB and MAPK pathways[J]. Front Pharmacol, 2024, 15: 1321095.
|
27 |
HUANG Q R, LE Y, LI S S, et al. Signaling pathways and potential therapeutic targets in acute respiratory distress syndrome (ARDS)[J]. Respir Res, 2024, 25(1): 30.
|
28 |
KIM J A, WAHLSTER S, LABUZETTA J N, et al. Focused management of patients with severe acute brain injury and ARDS[J]. Chest, 2022, 161(1): 140-151.
|
29 |
BELLANI G, LAFFEY J G, PHAM T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries[J]. JAMA, 2016, 315(8): 788-800.
|
30 |
ZIAKA M, EXADAKTYLOS A. Brain-lung interactions and mechanical ventilation in patients with isolated brain injury[J]. Crit Care, 2021, 25(1): 358.
|
31 |
LI C Y, CHEN W L, LIN F, et al. Functional two-way crosstalk between brain and lung: the brain-lung axis[J]. Cell Mol Neurobiol, 2023, 43(3): 991-1003.
|
32 |
MEYFROIDT G, BAGULEY I J, MENON D K. Paroxysmal sympathetic hyperactivity: the storm after acute brain injury[J]. Lancet Neurol, 2017, 16(9): 721-729.
|
33 |
YANG D X, JING Y, LIU Y L, et al. Inhibition of transient receptor potential vanilloid 1 attenuates blood-brain barrier disruption after traumatic brain injury in mice[J]. J Neurotrauma, 2019, 36(8): 1279-1290.
|
34 |
CORRIGAN F, MANDER K A, LEONARD A V, et al. Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation[J]. J Neuroinflammation, 2016, 13(1): 264.
|
35 |
PARPAITE T, CARDOUAT G, MAUROUX M, et al. Effect of hypoxia on TRPV1 and TRPV4 channels in rat pulmonary arterial smooth muscle cells[J]. Pflugers Arch, 2016, 468(1): 111-130.
|
36 |
Han DW, Oh JE, Lim BJ, et al. Dexmedetomidine attenuates subarachnoid hemorrhage-induced acute lung injury through regulating autophagy and TLR/NF-κB signaling pathway[J]. Korean J Anesthesiol, 2022, 75(6): 518-529.
|
37 |
MROZEK S, GOBIN J, CONSTANTIN J M, et al. Crosstalk between brain, lung and heart in critical care[J]. Anaesth Crit Care Pain Med, 2020, 39(4): 519-530.
|
38 |
MEZA R C, ANCATÉN-GONZÁLEZ C, CHIU C Q, et al. Transient receptor potential vanilloid 1 function at central synapses in health and disease[J]. Front Cell Neurosci, 2022, 16: 864828.
|
39 |
CHAI C Z, HO U C, KUO L T. Systemic inflammation after aneurysmal subarachnoid hemorrhage[J]. Int J Mol Sci, 2023, 24(13): 10943.
|
40 |
BARAL P, UMANS B D, LI L, et al. Nociceptor sensory neurons suppress neutrophil and γδ T cell responses in bacterial lung infections and lethal pneumonia[J]. Nat Med, 2018, 24(4): 417-426.
|
41 |
LU W C, YAN J F, WANG C Y, et al. Interorgan communication in neurogenic heterotopic ossification: the role of brain-derived extracellular vesicles[J]. Bone Res, 2024, 12: 11.
|
42 |
ZHANG C N, LI F J, ZHAO Z L, et al. The role of extracellular vesicles in traumatic brain injury-induced acute lung injury[J]. Am J Physiol Lung Cell Mol Physiol, 2021, 321(5): L885-L891.
|
43 |
SHAH R D, WUNDERINK R G. Viral pneumonia and acute respiratory distress syndrome[J]. Clin Chest Med, 2017, 38(1): 113-125.
|
44 |
FAN E, BEITLER J R, BROCHARD L, et al. COVID-19-associated acute respiratory distress syndrome: is a different approach to management warranted?[J]. Lancet Respir Med, 2020, 8(8): 816-821.
|
45 |
LIVIERO F, CAMPISI M, MASON P, et al. Transient receptor potential vanilloid subtype 1: potential role in infection, susceptibility, symptoms and treatment of COVID-19[J]. Front Med, 2021, 8: 753819.
|
46 |
HAUDEBOURG A F, PERIER F, TUFFET S, et al. Respiratory mechanics of COVID-19- versus non-COVID-19-associated acute respiratory distress syndrome[J]. Am J Respir Crit Care Med, 2020, 202(2): 287-290.
|
47 |
THAPA K, VERMA N, SINGH T G, et al. COVID-19-associated acute respiratory distress syndrome (CARDS): mechanistic insights on therapeutic intervention and emerging trends[J]. Int Immunopharmacol, 2021, 101(Pt A): 108328.
|
48 |
SAKATANI H, KONO M, SHIGA T, et al. The roles of transient receptor potential vanilloid 1 and 4 in olfactory regeneration[J]. Lab Investig, 2023, 103(4): 100051.
|
49 |
JAFFAL S M, ABBAS M A. TRP channels in COVID-19 disease: potential targets for prevention and treatment[J]. Chem Biol Interact, 2021, 345: 109567.
|
50 |
HARFORD T J, GROVE L, REZAEE F, et al. RSV infection potentiates TRPV1-mediated calcium transport in bronchial epithelium of asthmatic children[J]. Am J Physiol Lung Cell Mol Physiol, 2021, 320(6): L1074-L1084.
|
51 |
STINSON R J, MORICE A H, SADOFSKY L R. Modulation of transient receptor potential (TRP) channels by plant derived substances used in over-the-counter cough and cold remedies[J]. Respir Res, 2023, 24(1): 45.
|