| 1 |
MOKHTARI T, HASSANI F, GHAFFARI N, et al. COVID-19 and multiorgan failure: a narrative review on potential mechanisms[J]. J Mol Histol, 2020, 51(6): 613-628.
|
| 2 |
JEWELL P D, BRAMHAM K, GALLOWAY J, et al. COVID-19-related acute kidney injury; incidence, risk factors and outcomes in a large UK cohort[J]. BMC Nephrol, 2021, 22(1): 359.
|
| 3 |
SCHIFFL H, LANG S M. Long-term interplay between COVID-19 and chronic kidney disease[J]. Int Urol Nephrol, 2023, 55(8): 1977-1984.
|
| 4 |
VOLBEDA M, JOU-VALENCIA D, van den HEUVEL M C, et al. Acute and chronic histopathological findings in renal biopsies in COVID-19[J]. Clin Exp Med, 2023, 23(4): 1003-1014.
|
| 5 |
陈成, 张小容, 鞠振宇, 等. 新型冠状病毒肺炎引发细胞因子风暴的机制及相关免疫治疗研究进展[J]. 中华烧伤杂志, 2020, 36(6): 471-475.
|
|
CHEN C, ZHANG X R, JU Z Y, et al. Advances in the research of mechanism and related immunotherapy on the cytokine storm induced by coronavirus disease 2019[J]. Zhonghua Shao Shang Za Zhi, 2020, 36(6): 471-475.
|
| 6 |
JIANG Y Z, RUBIN L, PENG T M, et al. Cytokine storm in COVID-19: from viral infection to immune responses, diagnosis and therapy[J]. Int J Biol Sci, 2022, 18(2): 459-472.
|
| 7 |
CHEUNG M D, ERMAN E N, MOORE K H, et al. Resident macrophage subpopulations occupy distinct microenvironments in the kidney[J]. JCI Insight, 2022, 7(20): e161078.
|
| 8 |
KHAN S, SHAFIEI M S, LONGORIA C, et al. SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway[J]. eLife, 2021, 10: e68563.
|
| 9 |
SCARPIONI R, VALSANIA T, ALBERTAZZI V, et al. Acute kidney injury, a common and severe complication in hospitalized patients during the COVID-19 pandemic[J]. J Nephrol, 2021, 34(4): 1019-1024.
|
| 10 |
VAIDYA V S, FERGUSON M A, BONVENTRE J V. Biomarkers of acute kidney injury[J]. Annu Rev Pharmacol Toxicol, 2008, 48: 463-493.
|
| 11 |
LIU H C, XU X, DENG X, et al. Projecting the potential impact of an Omicron XBB.1.5 wave in Shanghai, China[EB/OL]. medRxiv preprint, medRxiv: 2023:2023.05.10.23289761 (2023-05-10) [2024-05-20]. https://www.medrxiv.org/content/10.1101/2023.05.10.23289761v1.full.pdf
|
| 12 |
ZHANG X X, ZHANG W H, CHEN S J. Shanghai′s life-saving efforts against the current Omicron wave of the COVID-19 pandemic[J]. Lancet, 2022, 399(10340): 2011-2012.
|
| 13 |
SILVER S A, BEAUBIEN-SOULIGNY W, SHAH P S, et al. The prevalence of acute kidney injury in patients hospitalized with COVID-19 infection: a systematic review and meta-analysis[J]. Kidney Med, 2021, 3(1): 83-98.e1.
|
| 14 |
ZHENG X Z, ZHAO Y L, YANG L. Acute kidney injury in COVID-19: the Chinese experience[J]. Semin Nephrol, 2020, 40(5): 430-442.
|
| 15 |
CHEN K H, LEI Y, HE Y N, et al. Clinical outcomes of hospitalized COVID-19 patients with renal injury: a multi-hospital observational study from Wuhan[J]. Sci Rep, 2021, 11(1): 15205.
|
| 16 |
LIU R, WANG Y, LI J, et al. Decreased T cell populations contribute to the increased severity of COVID-19[J]. Clin Chim Acta, 2020, 508: 110-114.
|
| 17 |
DIAO B, WANG C H, TAN Y J, et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19)[J]. Front Immunol, 2020, 11: 827.
|
| 18 |
WILLIAMS R O, FELDMANN M, MAINI R N. Anti-tumor necrosis factor ameliorates joint disease in murine collagen-induced arthritis[J]. Proc Natl Acad Sci U S A, 1992, 89(20): 9784-9788.
|
| 19 |
XU X L, HAN M F, LI T T, et al. Effective treatment of severe COVID-19 patients with tocilizumab[J]. Proc Natl Acad Sci USA, 2020, 117(20): 10970-10975.
|
| 20 |
WANG J J, YANG X J, LI Y S, et al. Specific cytokines in the inflammatory cytokine storm of patients with COVID-19-associated acute respiratory distress syndrome and extrapulmonary multiple-organ dysfunction[J]. Virol J, 2021, 18(1): 117.
|
| 21 |
MEDEIROS T, GUIMARÃES G M C, CARVALHO F R, et al. Acute kidney injury associated to COVID-19 leads to a strong unbalance of circulant immune mediators[J]. Cytokine, 2022, 157: 155974.
|
| 22 |
SHIRATO K, KIZAKI T. SARS-CoV-2 spike protein S1 subunit induces pro-inflammatory responses via toll-like receptor 4 signaling in murine and human macrophages[J]. Heliyon, 2021, 7(2): e06187.
|
| 23 |
ZHAO Y C, KUANG M, LI J H, et al. SARS-CoV-2 spike protein interacts with and activates TLR41[J]. Cell Res, 2021, 31(7): 818-820.
|
| 24 |
CHIOK K, HUTCHISON K, MILLER L G, et al. Proinflammatory responses in SARS-CoV-2 and soluble spike glycoprotein S1 subunit activated human macrophages[J]. Viruses, 2023, 15(3): 754.
|
| 25 |
DIAMOND J R, PESEK I. Glomerular tumor necrosis factor and interleukin 1 during acute aminonucleoside nephrosis. An immunohistochemical study[J]. Lab Invest, 1991, 64(1): 21-28.
|
| 26 |
TIPPING P G, LEONG T W, HOLDSWORTH S R. Tumor necrosis factor production by glomerular macrophages in anti-glomerular basement membrane glomerulonephritis in rabbits[J]. Lab Invest, 1991, 65(3): 272-279.
|
| 27 |
LIAN Q Z, ZHANG K, ZHANG Z, et al. Differential effects of macrophage subtypes on SARS-CoV-2 infection in a human pluripotent stem cell-derived model[J]. Nat Commun, 2022, 13(1): 2028.
|
| 28 |
NEALE T J, RÜGER B M, MACAULAY H, et al. Tumor necrosis factor-alpha is expressed by glomerular visceral epithelial cells in human membranous nephropathy[J]. Am J Pathol, 1995, 146(6): 1444-1454.
|
| 29 |
CANTERO-NAVARRO E, RAYEGO-MATEOS S, OREJUDO M, et al. Role of macrophages and related cytokines in kidney disease[J]. Front Med (Lausanne), 2021, 8: 688060.
|