JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE) ›› 2021, Vol. 41 ›› Issue (5): 684-689.doi: 10.3969/j.issn.1674-8115.2021.05.021
• Review • Previous Articles Next Articles
Jing-yan HU(), Lin ZHANG, Liang ZHANG()
Online:
2021-05-28
Published:
2021-05-27
Contact:
Liang ZHANG
E-mail:hujingyan95@sjtu.edu.cn;liangzhang2014@sjtu.edu.cn
Supported by:
CLC Number:
Jing-yan HU, Lin ZHANG, Liang ZHANG. Function of human nucleic acid alkylation damage repair enzyme ALKBH3 in cancer progression and oncotherapy[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(5): 684-689.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2021.05.021
1 | Sedgwick B. Repairing DNA-methylation damage[J]. Nat Rev Mol Cell Biol, 2004, 5(2): 148-157. |
2 | Taverna P, Sedgwick B. Generation of an endogenous DNA-methylating agent by nitrosation in Escherichia coli[J]. J Bacteriol, 1996, 178(17): 5105-5111. |
3 | Samson L, Cairns J. A new pathway for DNA repair in Escherichia coli[J]. Nature, 1977, 267(5608): 281-283. |
4 | Trewick SC, Henshaw TF, Hausinger RP, et al. Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage[J]. Nature, 2002, 419(6903): 174-178. |
5 | Chen FY, Tang Q, Bian K, et al. Adaptive response enzyme AlkB preferentially repairs 1-methylguanine and 3-methylthymine adducts in double-stranded DNA[J]. Chem Res Toxicol, 2016, 29(4): 687-693. |
6 | Delaney JC, Smeester L, Wong C, et al. AlkB reverses etheno DNA lesions caused by lipid oxidation in vitro and in vivo[J]. Nat Struct Mol Biol, 2005, 12(10): 855-860. |
7 | Liu Y, Yuan Q, Xie L. The AlkB family of Fe (II)/alpha-ketoglutarate-dependent dioxygenases modulates embryogenesis through epigenetic regulation[J]. Curr Stem Cell Res Ther, 2018, 13(2): 136-143. |
8 | Yi C, Yang CG, He C. A non-heme iron-mediated chemical demethylation in DNA and RNA[J]. Acc Chem Res, 2009, 42(4): 519-529. |
9 | Hausinger RP. Fe(II)/alpha-ketoglutarate-dependent hydroxylases and related enzymes[J]. Crit Rev Biochem Mol Biol, 2004, 39(1): 21-68. |
10 | Liu FG, Clark W, Luo GZ, et al. ALKBH1-mediated tRNA demethylation regulates translation[J]. Cell, 2016, 167(7): 1897. |
11 | Tian LF, Liu YP, Chen LQ, et al. Structural basis of nucleic acid recognition and 6mA demethylation by human ALKBH1[J]. Cell Res, 2020, 30(3): 272-275. |
12 | Zhang M, Yang SM, Nelakanti R, et al. Mammalian ALKBH1 serves as an N6-mA demethylase of unpairing DNA[J]. Cell Res, 2020, 30(3): 197-210. |
13 | Xu C, Liu K, Tempel W, et al. Structures of human ALKBH5 demethylase reveal a unique binding mode for specific single-stranded N6-methyladenosine RNA demethylation[J]. J Biol Chem, 2014, 289(25): 17299-17311. |
14 | Gerken T, Girard CA, Tung YC, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase[J]. Science, 2007, 318(5855): 1469-1472. |
15 | Zhang X, Wei LH, Wang YX, et al. Structural insights into FTO′s catalytic mechanism for the demethylation of multiple RNA substrates[J]. Proc Natl Acad Sci USA, 2019, 116(8): 2919-2924. |
16 | Chen BE, Liu HC, Sun XX, et al. Mechanistic insight into the recognition of single-stranded and double-stranded DNA substrates by ABH2 and ABH3[J]. Mol Biosyst, 2010, 6(11): 2143-2149. |
17 | Duncan T, Trewick SC, Koivisto P, et al. Reversal of DNA alkylation damage by two human dioxygenases[J]. Proc Natl Acad Sci USA, 2002, 99(26): 16660-16665. |
18 | Li MM, Nilsen A, Shi Y, et al. ALKBH4-dependent demethylation of actin regulates actomyosin dynamics[J]. Nat Commun, 2013, 4: 1832. |
19 | Fu D, Jordan JJ, Samson LD. Human ALKBH7 is required for alkylation and oxidation-induced programmed necrosis[J]. Genes Dev, 2013, 27(10): 1089-1100. |
20 | Jordan JJ, Chhim S, Margulies CM, et al. ALKBH7 drives a tissue and sex-specific necrotic cell death response following alkylation-induced damage[J]. Cell Death Dis, 2017, 8(7): e2947. |
21 | Ohshio I, Kawakami R, Tsukada Y, et al. ALKBH8 promotes bladder cancer growth and progression through regulating the expression of survivin[J]. Biochem Biophys Res Commun, 2016, 477(3): 413-418. |
22 | Fedeles BI, Singh V, Delaney JC, et al. The AlkB family of Fe(II)/α-ketoglutarate-dependent dioxygenases: repairing nucleic acid alkylation damage and beyond[J]. J Biol Chem, 2015, 290(34): 20734-20742. |
23 | Lee DH, Jin SG, Cai S, et al. Repair of methylation damage in DNA and RNA by mammalian AlkB homologues[J]. J Biol Chem, 2005, 280(47): 39448-39459. |
24 | Aas PA, Otterlei M, Falnes PO, et al. Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA[J]. Nature, 2003, 421(6925): 859-863. |
25 | Sundheim O, Vågbø CB, Bjørås M, et al. Human ABH3 structure and key residues for oxidative demethylation to reverse DNA/RNA damage[J]. EMBO J, 2006, 25(14): 3389-3397. |
26 | Yang CG, Yi CQ, Duguid EM, et al. Crystal structures of DNA/RNA repair enzymes AlkB and ABH2 bound to dsDNA[J]. Nature, 2008, 452(7190): 961-965. |
27 | Monsen VT, Sundheim O, Aas PA, et al. Divergent ß-hairpins determine double-strand versus single-strand substrate recognition of human AlkB-homologues 2 and 3[J]. Nucleic Acids Res, 2010, 38(19): 6447-6455. |
28 | Dango S, Mosammaparast N, Sowa ME, et al. DNA unwinding by ASCC3 helicase is coupled to ALKBH3-dependent DNA alkylation repair and cancer cell proliferation[J]. Mol Cell, 2011, 44(3): 373-384. |
29 | Brickner JR, Soll JM, Lombardi PM, et al. A ubiquitin-dependent signalling axis specific for ALKBH-mediated DNA dealkylation repair[J]. Nature, 2017, 551(7680): 389-393. |
30 | Yoshizawa S, Fourmy D, Puglisi JD. Recognition of the Codon-anticodon helix by ribosomal RNA[J]. Science, 1999, 285(5434): 1722-1725. |
31 | Li XY, Xiong XS, Wang K, et al. Transcriptome-wide mapping reveals reversible and dynamic N1-methyladenosine methylome[J]. Nat Chem Biol, 2016, 12(5): 311-316. |
32 | Ueda Y, Ooshio I, Fusamae Y, et al. AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells[J]. Sci Rep, 2017, 7: 42271. |
33 | Chen ZJ, Qi MJ, Shen B, et al. Transfer RNA demethylase ALKBH3 promotes cancer progression via induction of tRNA-derived small RNAs[J]. Nucleic Acids Res, 2019, 47(5): 2533-2545. |
34 | Moore LD, Le T, Fan G. DNA methylation and its basic function[J]. Neuropsychopharmacology, 2013, 38(1): 23-38. |
35 | Liefke R, Windhof-Jaidhauser IM, Gaedcke J, et al. The oxidative demethylase ALKBH3 marks hyperactive gene promoters in human cancer cells[J]. Genome Med, 2015, 7(1): 66. |
36 | Konishi N, Nakamura M, Ishida E, et al. High expression of a new marker PCA-1 in human prostate carcinoma[J]. Clin Cancer Res, 2005, 11(14): 5090-5097. |
37 | Koike K, Ueda Y, Hase H, et al. Anti-tumor effect of AlkB homolog 3 knockdown in hormone- independent prostate cancer cells[J]. Curr Cancer Drug Targets, 2012, 12(7): 847-856. |
38 | Pilžys T, Marcinkowski M, Kukwa W, et al. ALKBH overexpression in head and neck cancer: potential target for novel anticancer therapy[J]. Sci Rep, 2019, 9(1): 13249. |
39 | Yamato I, Sho M, Shimada K, et al. PCA-1/ALKBH3 contributes to pancreatic cancer by supporting apoptotic resistance and angiogenesis[J]. Cancer Res, 2012, 72(18): 4829-4839. |
40 | Tasaki M, Shimada K, Kimura H, et al. ALKBH3, a human AlkB homologue, contributes to cell survival in human non-small-cell lung cancer[J]. Br J Cancer, 2011, 104(4): 700-706. |
41 | Woo HH, Chambers SK. Human ALKBH3-induced m1A demethylation increases the CSF-1 mRNA stability in breast and ovarian cancer cells[J]. Biochim Biophys Acta Gene Regul Mech, 2019, 1862(1): 35-46. |
42 | Hotta K, Sho M, Fujimoto K, et al. Clinical significance and therapeutic potential of prostate cancer antigen-1/ALKBH3 in human renal cell carcinoma[J]. Oncol Rep, 2015, 34(2): 648-654. |
43 | Wang Q, Wang G, Wang Y, et al. Association of AlkB homolog 3 expression with tumor recurrence and unfavorable prognosis in hepatocellular carcinoma[J]. J Gastroenterol Hepatol, 2018, 33(9):1617-1625. |
44 | Nakao S, Mabuchi M, Shimizu T, et al. Design and synthesis of prostate cancer antigen-1 (PCA-1/ALKBH3) inhibitors as anti-prostate cancer drugs[J]. Bioorg Med Chem Lett, 2014, 24(4): 1071-1074. |
45 | Nigam R, Babu KR, Ghosh T, et al. Indenone derivatives as inhibitor of human DNA dealkylation repair enzyme AlkBH3[J]. Bioorg Med Chem, 2018, 26(14): 4100-4112. |
46 | Li Q, Huang Y, Liu XC, et al. Rhein inhibits AlkB repair enzymes and sensitizes cells to methylated DNA damage[J]. J Biol Chem, 2016, 291(21): 11083-11093. |
[1] | Yu-sheng LU, Wen-yi YANG, Hai-long MA, Jing-zhou HU. Impact of Ras association domain family 5 on cell migration and invasion of head and neck squamous cell carcinoma [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(6): 717-723. |
[2] | Yun-fang MA, Li-na PAN, Zhen LI, Bei-li GAO, Jia-an HU, Zhi-hong XU. Exploratory study on downregulation of PD-L1 in KRAS G12V-mutant non-small cell lung cancer cells by selumetinib [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(6): 741-748. |
[3] | Sheng CHENG, Yi ZHAO, Yong-chen WANG, Ping HUANG. Meta-analysis of the effect of BRAF gene mutation on the prognosis of colorectal cancer patients with liver metastases after hepatectomy [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(6): 786-792. |
[4] | Jiang-lei MA, Xiao-yao LI, Shi-fu ZHAO, De-jun YANG. Advances in diagnostic methods of clinical staging for gastric cancer [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(6): 821-825. |
[5] | Jian-hua XU, Ping JIANG, Jiong DENG. Expression and significance of ATP-binding cassette superfamily G member 2 in lung cancer [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(6): 830-833. |
[6] | Lu-di YANG, Gao-ming WANG, Ren-hao HU, Xiao-hua JIANG, Ran CUI. Identification of core genes in pancreatic cancer progression by bioinformatics analysis [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(5): 571-578. |
[7] | Jia-ling ZHANG, Feng-chun ZHANG, Ying-chun XU. Research progress in the systemic treatment for breast cancer with brain metastasis [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(5): 671-677. |
[8] | Qi-sheng GU, Mi-li ZHANG, Can CAO, Ji-kun LI. Association of alternative splicing and tumor immune in gastric cancer based on TCGA data set [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(4): 448-458. |
[9] | Ru-juan BAO, Hui-fang CHEN, Yu DONG, You-qiong YE, Bing SU. Construction of prognostic risk score model of colorectal cancer gene signature based on transcriptome dysregulation [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(3): 285-296. |
[10] | Yue-ting JIANG, Jia-ying NI, Shen-rui GUO, Han LI, Yu-jia ZHUANG, Feng WANG. Physiological function of cholesterol sulfate and its role in related diseases [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(3): 371-375. |
[11] | Yan-ru MA, Lin-hua JI, Tian-ying TONG, Yu-qing YAN, Chao-qin SHEN, Xin-yu ZHANG, Ying-ying CAO, Jie HONG, Hao-yan CHEN. Establishment and validation of prognostic prediction model of colorectal cancer based on single-cell RNA sequencing [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(2): 159-165. |
[12] | Zhong-mao FU, Zai LUO, Ze-yin RONG, Jian-ming ZHANG, Teng-fei LI, Zhi-long YU, Chen HUANG. Study on the function and prognosis of circular RNA in colorectal cancer tissues based on high-throughput sequencing [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(2): 187-195. |
[13] | Xiao-bin ZHANG, Peng LIU, Zhi-chao LIU, Yang YANG, Bin LI, Yi-feng SUN, Rong HUA, Xu-feng GUO, Yi HE, Hai-yong GU, Zhi-gang LI. Biological characteristics and surgical treatment results of stage Ⅰ esophageal squamous cell carcinoma [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(2): 202-209. |
[14] | Yuan-xin HUANG, Dong-mei LAI. Application of proteomics to the study of gynecological diseases [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(2): 233-240. |
[15] | Xiao-jun ZHAO, Zhi-gang QIAO, Ting-yu LIANG, Yan-ling AN. Expression of breast cancer susceptibility gene 1 protein in brain gliomas and its influence on the sensitivity of temozolomide [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(1): 118-122. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||