
JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE) ›› 2022, Vol. 42 ›› Issue (2): 158-165.doi: 10.3969/j.issn.1674-8115.2022.02.004
• Basic research • Previous Articles Next Articles
Guodong DANG1(
), Xinyu HONG2(
), Meiqin CAI1(
)
Received:2021-10-08
Online:2022-02-28
Published:2022-03-17
Contact:
Xinyu HONG,Meiqin CAI
E-mail:dang_guodong@126.com;hongxinyu@scdc.sh.cn;caimeiqin@sjtu.edu.cn
CLC Number:
Guodong DANG, Xinyu HONG, Meiqin CAI. Interventional effects of nicotinamide mononucleotide on metabolism in aging mice[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2022, 42(2): 158-165.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2022.02.004
| Group | 1st week | 3rd week | 6th week | 9th week | 12th week |
|---|---|---|---|---|---|
| Control group | 28.07±0.29 | 28.50±0.39 | 28.64±0.40 | ‒ | ‒ |
| Premature aging model group | 28.50±0.45 | 28.64±0.37 | 28.57±0.51 | ‒ | ‒ |
| Intervention group Ⅰ | 29.14±0.29 | 29.71±0.30① | 29.79±0.39 | ‒ | ‒ |
| Aging model group | 28.50±0.23 | 29.21±0.33 | 29.26±0.38 | 30.79±0.30 | 31.93±0.46 |
| Intervention group Ⅱ | 28.21±0.38 | 29.07±0.35 | 29.07±0.40 | 30.29±0.30 | 31.29±0.41 |
Tab 1 Body mass of mice at different stages in each group (g, x±s)
| Group | 1st week | 3rd week | 6th week | 9th week | 12th week |
|---|---|---|---|---|---|
| Control group | 28.07±0.29 | 28.50±0.39 | 28.64±0.40 | ‒ | ‒ |
| Premature aging model group | 28.50±0.45 | 28.64±0.37 | 28.57±0.51 | ‒ | ‒ |
| Intervention group Ⅰ | 29.14±0.29 | 29.71±0.30① | 29.79±0.39 | ‒ | ‒ |
| Aging model group | 28.50±0.23 | 29.21±0.33 | 29.26±0.38 | 30.79±0.30 | 31.93±0.46 |
| Intervention group Ⅱ | 28.21±0.38 | 29.07±0.35 | 29.07±0.40 | 30.29±0.30 | 31.29±0.41 |
| Group | 1st week | 3rd week | 6th week | 9th week | 12th week |
|---|---|---|---|---|---|
| Control group | 4.94±0.14 | 4.91±0.15 | 3.81±0.10 | ‒ | ‒ |
| Premature aging model group | 4.99±0.18 | 4.62±0.23 | 3.47±0.16 | ‒ | ‒ |
| Intervention group Ⅰ | 5.31±0.16 | 4.91±0.17 | 3.78±0.10 | ‒ | ‒ |
| Aging model group | 5.50±0.11 | 4.84±0.22 | 3.79±0.12 | 4.80±0.11 | 4.69±0.14 |
| Intervention group Ⅱ | 5.46±0.16 | 4.83±0.15 | 3.12±0.38 | 4.69±0.15 | 4.41±0.16 |
Tab 2 Food intake of mice at different stages in each group (g, x±s)
| Group | 1st week | 3rd week | 6th week | 9th week | 12th week |
|---|---|---|---|---|---|
| Control group | 4.94±0.14 | 4.91±0.15 | 3.81±0.10 | ‒ | ‒ |
| Premature aging model group | 4.99±0.18 | 4.62±0.23 | 3.47±0.16 | ‒ | ‒ |
| Intervention group Ⅰ | 5.31±0.16 | 4.91±0.17 | 3.78±0.10 | ‒ | ‒ |
| Aging model group | 5.50±0.11 | 4.84±0.22 | 3.79±0.12 | 4.80±0.11 | 4.69±0.14 |
| Intervention group Ⅱ | 5.46±0.16 | 4.83±0.15 | 3.12±0.38 | 4.69±0.15 | 4.41±0.16 |
| Group | n | Thymus index | Spleen index | Liver index | Kidney index |
|---|---|---|---|---|---|
| Control group | 8 | 2.17±0.07 | 2.20±0.11 | 43.10±0.73 | 14.66±0.37 |
| Premature aging model group | 8 | 1.89±0.12① | 2.14±0.11 | 43.66±0.36 | 13.37±0.27⑤ |
| Intervention group Ⅰ | 8 | 2.04±0.12 | 2.03±0.09 | 45.69±0.63④ | 14.29±0.50 |
| Aging model group | 8 | 1.44±0.08② | 1.81±0.11③ | 37.80±0.64② | 13.10±0.25⑥ |
| Intervention group Ⅱ | 8 | 1.36±0.05② | 1.81±0.10③ | 41.70±0.71⑦ | 13.16±0.03⑥ |
Tab 3 Comparison of the organ indexes in each group (x±s)
| Group | n | Thymus index | Spleen index | Liver index | Kidney index |
|---|---|---|---|---|---|
| Control group | 8 | 2.17±0.07 | 2.20±0.11 | 43.10±0.73 | 14.66±0.37 |
| Premature aging model group | 8 | 1.89±0.12① | 2.14±0.11 | 43.66±0.36 | 13.37±0.27⑤ |
| Intervention group Ⅰ | 8 | 2.04±0.12 | 2.03±0.09 | 45.69±0.63④ | 14.29±0.50 |
| Aging model group | 8 | 1.44±0.08② | 1.81±0.11③ | 37.80±0.64② | 13.10±0.25⑥ |
| Intervention group Ⅱ | 8 | 1.36±0.05② | 1.81±0.10③ | 41.70±0.71⑦ | 13.16±0.03⑥ |
| Group | n | Serum | Liver tissue | |||||
|---|---|---|---|---|---|---|---|---|
SOD/ (U·mL-1) | GSH-Px/ (U·mL-1) | MDA/ (nmol·mL-1) | SOD/ (U·mL-1) | GSH-Px/ (U·mL-1) | MDA/ (nmol·mL-1) | |||
| Control group | 14 | 140.60±2.96 | 743.05±38.44 | 5.38±0.19 | 169.20±4.99 | 505.60±11.58 | 0.74±0.03 | |
| Premature aging model group | 14 | 128.67±2.03① | 626.22±12.24② | 6.93±0.22③ | 158.94±2.49④ | 484.13±21.50 | 0.85±0.03 | |
| Intervention group Ⅰ | 14 | 136.94±3.41⑦ | 714.85±31.53⑧ | 6.12±0.24⑨ | 163.17±3.32 | 498.91±7.12 | 0.77±0.04 | |
| Aging model group | 14 | 126.95±2.51② | 656.65±7.65⑤ | 7.21±0.16③ | 158.71±1.45⑥ | 587.65±21.14② | 0.94±0.07① | |
| Intervention group Ⅱ | 14 | 133.91±1.88⑩ | 696.88±11.23 | 6.36±0.12⑪ | 166.83±2.91 | 628.14±18.25③ | 0.70±0.04⑪ | |
Tab 4 Effects of NMN on the activities of SOD, GSH-Px and MDA content in serum and liver tissue of each group (x±s)
| Group | n | Serum | Liver tissue | |||||
|---|---|---|---|---|---|---|---|---|
SOD/ (U·mL-1) | GSH-Px/ (U·mL-1) | MDA/ (nmol·mL-1) | SOD/ (U·mL-1) | GSH-Px/ (U·mL-1) | MDA/ (nmol·mL-1) | |||
| Control group | 14 | 140.60±2.96 | 743.05±38.44 | 5.38±0.19 | 169.20±4.99 | 505.60±11.58 | 0.74±0.03 | |
| Premature aging model group | 14 | 128.67±2.03① | 626.22±12.24② | 6.93±0.22③ | 158.94±2.49④ | 484.13±21.50 | 0.85±0.03 | |
| Intervention group Ⅰ | 14 | 136.94±3.41⑦ | 714.85±31.53⑧ | 6.12±0.24⑨ | 163.17±3.32 | 498.91±7.12 | 0.77±0.04 | |
| Aging model group | 14 | 126.95±2.51② | 656.65±7.65⑤ | 7.21±0.16③ | 158.71±1.45⑥ | 587.65±21.14② | 0.94±0.07① | |
| Intervention group Ⅱ | 14 | 133.91±1.88⑩ | 696.88±11.23 | 6.36±0.12⑪ | 166.83±2.91 | 628.14±18.25③ | 0.70±0.04⑪ | |
| 1 | VERDIN E. NAD⁺ in aging, metabolism, and neurodegeneration[J]. Science, 2015, 350(6265): 1208-1213. |
| 2 | GRIFFITHS H B S, WILLIAMS C, KING S J, et al. Nicotinamide adenine dinucleotide (NAD+): essential redox metabolite, co-substrate and an anti-cancer and anti-ageing therapeutic target[J]. Biochem Soc Trans, 2020, 48(3): 733-744. |
| 3 | ZAPATA-PÉREZ R, WANDERS R J A, VAN KARNEBEEK C D M, et al. NAD+ homeostasis in human health and disease[J]. EMBO Mol Med, 2021, 13(7): e13943. |
| 4 | FANG E F, LAUTRUP S, HOU Y J, et al. NAD+ in aging: molecular mechanisms and translational implications[J]. Trends Mol Med, 2017, 23(10): 899-916. |
| 5 | KISS T, BALASUBRAMANIAN P, VALCARCEL-ARES M N, et al. Nicotinamide mononucleotide (NMN) treatment attenuates oxidative stress and rescues angiogenic capacity in aged cerebromicrovascular endothelial cells: a potential mechanism for the prevention of vascular cognitive impairment[J]. GeroScience, 2019, 41(5): 619-630. |
| 6 | SONG J, LI J, YANG F J, et al. Nicotinamide mononucleotide promotes osteogenesis and reduces adipogenesis by regulating mesenchymal stromal cells via the SIRT1 pathway in aged bone marrow[J]. Cell Death Dis, 2019, 10(5): 336. |
| 7 | BERTOLDO M J, LISTIJONO D R, HO W H J, et al. NAD+ repletion rescues female fertility during reproductive aging[J]. Cell Rep, 2020, 30(6): 1670-1681.e7. |
| 8 | KISS T, GILES C B, TARANTINI S, et al. Nicotinamide mononucleotide (NMN) supplementation promotes anti-aging miRNA expression profile in the aorta of aged mice, predicting epigenetic rejuvenation and anti-atherogenic effects[J]. GeroScience, 2019, 41(4): 419-439. |
| 9 | YI M Q, MA Y Y, ZHU S B, et al. Comparative proteomic analysis identifies biomarkers for renal aging[J]. Aging, 2020, 12(21): 21890-21903. |
| 10 | CATON P W, KIESWICH J, YAQOOB M M, et al. Nicotinamide mononucleotide protects against pro-inflammatory cytokine-mediated impairment of mouse islet function[J]. Diabetologia, 2011, 54(12): 3083-3092. |
| 11 | YOSHINO J, MILLS K F, YOON M J, et al. Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice[J]. Cell Metab, 2011, 14(4): 528-536. |
| 12 | MAJEED Y, HALABI N, MADANI A Y, et al. SIRT1 promotes lipid metabolism and mitochondrial biogenesis in adipocytes and coordinates adipogenesis by targeting key enzymatic pathways[J]. Sci Rep, 2021, 11(1): 8177. |
| 13 | YOSHINO M, YOSHINO J, KAYSER B D, et al. Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women[J]. Science, 2021, 372(6547): 1224-1229. |
| 14 | 钟琳, 王晓舜, 王婷婷, 等. 青娥方提取物对D-半乳糖致衰老小鼠的延缓衰老作用及机制[J]. 中国实验方剂学杂志, 2015, 21(16): 134-138. |
| 15 | 朱亚珍, 朱虹光. D-半乳糖致衰老动物模型的建立及其检测方法[J]. 复旦学报(医学版), 2007, 34(4): 617-619. |
| 16 | SADIGH-ETEGHAD S, MAJDI A, MCCANN S K, et al. D-galactose-induced brain ageing model: a systematic review and meta-analysis on cognitive outcomes and oxidative stress indices[J]. PLoS One, 2017, 12(8): e0184122. |
| 17 | BRAIDY N, LIU Y. NAD+ therapy in age-related degenerative disorders: a benefit/risk analysis[J]. Exp Gerontol, 2020, 132: 110831. |
| 18 | HOSSEINI L, FAROKHI-SISAKHT F, BADALZADEH R, et al. Nicotinamide mononucleotide and melatonin alleviate aging-induced cognitive impairment via modulation of mitochondrial function and apoptosis in the prefrontal cortex and hippocampus[J]. Neuroscience, 2019, 423: 29-37. |
| 19 | WHITSON J A, BITTO A, ZHANG H, et al. SS-31 and NMN: two paths to improve metabolism and function in aged hearts [J]. Aging Cell, 2020, 19(10): e13213. |
| 20 | 付媛, 张美莉, 高韶辉, 等. 裸燕麦球蛋白源多肽作用于D-半乳糖致衰老小鼠的代谢组学研究[J]. 食品科学, 2020, 41(17): 118-125. |
| 21 | 和昱辰, 张波. 代谢组学技术及其在医学检验中的应用[J]. 国际检验医学杂志, 2014, 35(8): 1016-1018. |
| 22 | 刘虎. 基于维持状态的生长猪能量需要和代谢组研究[D]. 北京: 中国农业大学, 2018. |
| 23 | BAI P, CANTÓ C, OUDART H, et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation [J]. Cell Metab, 2011, 13(4): 461-468. |
| 24 | UDDIN G M, YOUNGSON N A, SINCLAIR D A, et al. Head to head comparison of short-term treatment with the NAD+ precursor nicotinamide mononucleotide (NMN) and 6 weeks of exercise in obese female mice[J]. Front Pharmacol, 2016, 7: 258. |
| 25 | TARRAGÓ M G, CHINI C C S, KANAMORI K S, et al. A potent and specific CD38 inhibitor ameliorates age-related metabolic dysfunction by reversing tissue NAD+ decline[J]. Cell Metab, 2018, 27(5): 1081-1095. |
| 26 | 高璐, 王滢, 饶胜其, 等. 葡萄籽原花青素提取物对衰老模型小鼠抗氧化作用[J]. 食品科学, 2014, 35(23): 253-256. |
| 27 | 郭怡琼, 吴琼, 吴雅婷, 等. 枸杞多糖和有氧运动对大鼠非酒精性脂肪肝的干预效果及其机制研究[J]. 上海交通大学学报(医学版), 2020, 40(1): 30-36. |
| 28 | KRATZ E M, SOŁKIEWICZ K, KUBIS-KUBIAK A, et al. Sirtuins as important factors in pathological states and the role of their molecular activity modulators[J]. Int J Mol Sci, 2021, 22(2): 630. |
| 29 | GOMES A P, PRICE N L, LING A J, et al. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging[J]. Cell, 2013, 155(7): 1624-1638. |
| [1] | WANG Jingyi, DENG Jiali, ZHU Yi, DING Xinyi, GUO Jiajing, WANG Zhongling. Experimental study on novel pH-responsive manganese-based nanoprobes for ferroptosis and magnetic resonance imaging in breast cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(9): 1183-1193. |
| [2] | LI Siyu, CHEN Ya, HU Wentao, DAI Yongming, WU Yingwei. Using diffusion-relaxation correlation spectroscopic imaging to assess the heterogeneity of head and neck tumors and identify occult lymph node metastasis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(9): 1202-1213. |
| [3] | WANG Rui, YUAN Ying, TAO Xiaofeng. Application value of synthetic magnetic resonance imaging in predicting cervical lymph node metastasis of oral cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(7): 900-909. |
| [4] | SUN Lei, DAI Shifeng, CHEN Yuhua, XU Xinyi, JIANG Kele, LI Xiaowen, LI Chengjing, WU Tingting. Quantitative analysis of the distance between articular disc and condyle in patients with temporomandibular disorders [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(6): 684-692. |
| [5] | LI Zhuohang, YU Xindi, REN Jingya, SHEN Jia, DONG Suzhen, WANG Wei. Postoperative neurodevelopmental outcomes of end-to-side anastomosis for coarctation of the aorta [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(6): 753-759. |
| [6] | GU Liangrui, YAN Bicong, FANG Tonglei, WU Jinliang. Correlation between brain imaging features and cognitive impairment in end-stage renal disease patients based on susceptibility-weighted imaging [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(6): 760-765. |
| [7] | ZHANG Zhengjia, LI Xiaomin, ZHOU Xin, MA Hairong, AI Songtao. Preliminary study on the value of high-order functional magnetic resonance imaging in the evaluation of bone and soft tissue tumors [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(5): 585-596. |
| [8] | CAO Mingming, WANG Hui, YIN Yafu. Current research status of imaging markers for cognitive impairment in Parkinson′s disease [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(5): 646-652. |
| [9] | ZHANG Huihua, GAN Jing, HOU Miaomiao, LU Na. Bidirectional Mendelian randomization study of the relationship between brain imaging-derived phenotypes and obstructive sleep apnea [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(4): 468-475. |
| [10] | DENG Jiali, GUO Jiajing, WANG Jingyi, DING Xinyi, ZHU Yi, WANG Zhongling. Self -assembled drug -loaded nanoprobes for pyroptosis sensitization and chemical exchange saturation transfer imaging in breast cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(3): 271-281. |
| [11] | SUN Yidan, YANG Xin. Functional MRI study on anxiety-enhanced temporomandibular joint pain [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(3): 342-348. |
| [12] | LI Chenxi, WANG Zirui, JIN Tianhao, ZHOU Zengtong, TANG Guoyao, SHI Linjun. Correlation between computer-assisted quantitative autofluorescence imaging results and the pathological grading of oral epithelial dysplasia in oral leukoplakia [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(9): 1146-1154. |
| [13] | LUO Rui, YANG Gongxin, SHI Huimin, HAN Yongshun, HE Yining, TIAN Zhen, WU Yingwei. Study of imaging characteristics of Kimura disease in the head and neck [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(9): 1182-1189. |
| [14] | HAO Mingxiu, CHEN Hongwei, WANG Junlin, TANG Yinhan, WU Yunyun, JIN Yuhua, HU Yaomin. Investigation and epidemiological analysis of chronic diseases and comorbidities in hospitalized patients [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(4): 462-468. |
| [15] | LIU Yonghui, TANG Li, LIANG Taigang, ZHANG Jian, FENG Li. Research progress in the role of SIRT6 in aging and metabolism [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(11): 1439-1446. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||