Journal of Shanghai Jiao Tong University (Medical Science) ›› 2023, Vol. 43 ›› Issue (7): 860-872.doi: 10.3969/j.issn.1674-8115.2023.07.008

• Basic research • Previous Articles    

CXCL9 expression in breast cancer and its correlation with the characteristics of tumor immunoinfiltration

DU Shaoqian(), TAO Mengyu, CAO Yuan, WANG Hongxia, HU Xiaoqu, FAN Guangjian(), ZANG Lijuan()   

  1. Department of Oncology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
  • Received:2022-12-23 Accepted:2023-06-11 Online:2023-07-28 Published:2023-07-28
  • Contact: FAN Guangjian,ZANG Lijuan E-mail:dushaoqian@163.com;gjfan@shsmu.edu.cn;lou19941205@163.com
  • Supported by:
    Clinical Research Plan of Shanghai Hospital Development Center(SHDC2020CR2065B);Natural Science Foundation of Zhejiang Province(LY20H160010)

Abstract:

Objective ·To explore the effect of C-X-C motif chemokine ligand 9 (CXCL9) expression on the prognosis of breast cancer patients and its correlation with tumor-infiltrating immune cells (TIICs). Methods ·Transcriptome data of 1 100 breast tumor tissues and 112 adjacent tissues were obtained from The Cancer Genome Atlas (TCGA) database. CIBERSORT deconvolution algorithm was used to analyze the proportion of TIIC subgroups in breast cancer immune microenvironment and its effect on the prognosis of patients. Differentially expressed genes, immune-related genes and breast cancer prognostic-related genes were downloaded from TCGA database, ImmPort database and GEPIA2 data platform, respectively. The intersection relationships of the three gene sets were analyzed by using R language, and the target genes were screened. Based on the downloaded transcriptome data, CXCL9 positive-related genes,the difference of CXCL9 mRNA expression in breast cancer tissues and adjacent tissues and its effect on the prognosis of patients were analyzed. STRING data platform was used to analyze the protein-protein interaction (PPI) network of CXCL9. Gene Ontology (GO) function analysis and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis were performed on CXCL9 positive correlation genes and the genes corresponding to the interacting proteins obtained from the PPI network by using R language. Spearman correlation coefficient was used to analyze the correlation between CXCL9 mRNA expression and TIIC subgroups and immune checkpoint-related genes. Paraffin tissue samples of 60 clinical breast cancer patients were collected and made into tissue chips. The correlation between CXCL9 expression and CD8+ T cells infiltration in the tissue chips was detected by immunohistochemical staining (IHC). The types of CXCL9+ cells in breast cancer interstitium were analyzed by multiplex immunohistochemistry staining (mIHC). Kaplan-Meier (KM) survival curve was used to analyze the effect of CXCL9 mRNA expression and CD8+ T cell infiltration on the prognosis of breast cancer patients. Results ·CIBERSORT algorithm analysis showed that the distribution proportion of TIIC subgroups in breast cancer immune microenvironment varied greatly, and their effect on patients′ prognosis was also different. The Venn diagram of three types of gene sets was drawn, and CXCL9 was screened out. The top 150 positive correlation genes with CXCL9 were obtained. CXCL9 mRNA expression levels in four molecular types of breast cancer were higher than those in adjacent tissues (all P=0.000), and their high expressions were significantly associated with good prognosis of patients (P=0.013). A total of 41 interacting proteins were obtained through PPI network analysis. GO and KEGG analysis showed that CXCL9 and its related genes were mainly enriched in biological functions and pathways related to immune regulation. Spearman correlation coefficient analysis showed that the expression level of CXCL9 mRNA was positively correlated with CD8+ T cells infiltration ratio, negatively correlated with M2-type macrophages infiltration ratio, and positively correlated with most immune checkpoint genes expression (all P<0.05). IHC experiments showed that CXCL9 was highly expressed in breast cancer tissues compared with adjacent tissues, accompanied by an increased percentage of CD8+ T cells infiltration (P=0.000). mIHC results showed that CXCL9 was expressed in some CD68+ tumor-associated macrophages (TAMs) and CD11c+ dendritic cells (DCs) in the stroma of breast cancer. KM survival curve showed that when CXCL9 was highly expressed, CD8+ T cells high infiltration could prolong the survival of breast cancer patients. Conclusion ·CXCL9 can be used as a biomarker for good prognosis of breast cancer patients. The high expression of CXCL9 in the microenvironment of breast cancer is positively correlated with the infiltration ratio of CD8+ T cells and may activate its anti-tumor effect. The expression of CXCL9 may be closely related to the recruitment of lymphocytes into the tumor microenvironment for anti-tumor immune response.

Key words: breast cancer, C-X-C motif chemokine ligand 9 (CXCL9), tumor immunoinfiltration, bioinformatics analysis, CD8+ T cell

CLC Number: