
Journal of Shanghai Jiao Tong University (Medical Science) ›› 2023, Vol. 43 ›› Issue (9): 1169-1174.doi: 10.3969/j.issn.1674-8115.2023.09.011
• Clinical research • Previous Articles Next Articles
LU Xiaobing1(
), YUE Jiang1(
), HE Shengyun2, DONG Ying1, LU Qing2, MA Jing1(
)
Received:2023-04-06
Accepted:2023-08-25
Online:2023-09-28
Published:2023-09-28
Contact:
MA Jing
E-mail:luxiaobingszu@126.com;rjnfm3083@163.com;majing@renji.com
Supported by:CLC Number:
LU Xiaobing, YUE Jiang, HE Shengyun, DONG Ying, LU Qing, MA Jing. Effect of intramuscular adipose tissue in the skeletal muscle of thigh on glucose metabolism in male patients with obesity[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(9): 1169-1174.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2023.09.011
| Item | NGT group (n=41) | IGR group (n=39) | P value |
|---|---|---|---|
| General data | |||
| Age/year | 32.00 (28.50, 42.00) | 35.00 (31.00, 41.00) | 0.338 |
| BMI/(kg·m-2) | 34.34 (30.80, 38.55) | 34.56 (31.95, 37.65) | 0.605 |
| WC/cm | 114.31±11.55 | 124.25±18.26 | 0.017 |
| HC/cm | 115.00 (107.00, 122.00) | 117.50 (110.25, 126.25) | 0.101 |
| WHR | 0.99±0.06 | 1.01±0.06 | 0.095 |
| Laboratory test indicators | |||
| FBG/(mmol·L-1) | 5.10 (4.63, 5.43) | 5.99 (5.33, 7.54) | 0.000 |
| PBG-0.5h/(mmol·L-1) | 8.61 (7.56, 9.92) | 9.24 (8.32, 11.41) | 0.043 |
| PBG-1h/(mmol·L-1) | 9.18 (6.97, 9.97) | 12.39 (9.87, 13.99) | 0.000 |
| PBG-2h/(mmol·L-1) | 6.41 (5.78, 7.03) | 10.35 (8.88, 12.86) | 0.000 |
| PBG-3h/(mmol·L-1) | 4.18 (3.78, 4.81) | 6.60 (5.71, 8.81) | 0.000 |
| FINS/(μIU·mL-1) | 15.12 (10.15, 20.69) | 21.20 (12.02, 28.63) | 0.064 |
| INS-0.5h/(μIU·mL-1) | 107.18 (80.63, 162.12) | 79.47 (25.74, 116.61) | 0.025 |
| INS-1h/(μIU·mL-1) | 127.05 (83.54, 171.24) | 113.44 (52.24, 175.94) | 0.307 |
| INS-2h/(μIU·mL-1) | 70.69 (45.45, 117.95) | 98.84 (53.35, 205.92) | 0.028 |
| INS-3h/(μIU·mL-1) | 20.75 (11.08, 28.14) | 48.82 (33.61, 106.97) | 0.000 |
| FCP/(ng·mL-1) | 3.95 (3.33, 4.85) | 4.67 (3.80, 5.73) | 0.037 |
| CP-0.5h/(ng·mL-1) | 11.83 (8.13, 13.76) | 7.96 (6.41, 12.01) | 0.015 |
| CP-1h/(ng·mL-1) | 13.22 (10.83, 16.94) | 10.77 (8.43, 16.27) | 0.115 |
| CP-2h/(ng·mL-1) | 11.43 (9.17, 14.97) | 13.68 (10.87, 18.24) | 0.051 |
| CP-3h/(ng·mL-1) | 6.01 (4.43, 7.84) | 10.29 (8.03, 12.70) | 0.000 |
| HbA1c/% | 5.50 (5.20, 5.70) | 6.45 (5.70, 7.95) | 0.000 |
| HOMA-IR | 3.31 (2.14, 4.56) | 6.24 (3.45, 8.17) | 0.002 |
| GPT/(U·L-1) | 40.00 (20.00, 69.00) | 67.00 (38.00, 87.00) | 0.013 |
| GOT/(U·L-1) | 22.00 (16.00, 35.75) | 36.00 (25.00, 54.00) | 0.001 |
| GGT/(U·L-1) | 40.50 (26.00, 55.00) | 52.00 (41.00, 77.00) | 0.002 |
| BUN/(mmol·L-1) | 4.83±1.08 | 4.60±0.99 | 0.324 |
| Cre/(μmol·L-1) | 79.97±12.98 | 74.28±13.37 | 0.060 |
| UA/(mmol·L-1) | 487.82±122.65 | 479.23±104.40 | 0.740 |
| TAG/(mmol·L-1) | 1.63 (1.25, 2.71) | 2.36 (1.83, 3.41) | 0.010 |
| TC/(mmol·L-1) | 5.01±1.09 | 5.44±0.99 | 0.068 |
| HDL-C/(mmol·L-1) | 1.09±0.24 | 1.06±0.20 | 0.531 |
| LDL-C/(mmol·L-1) | 3.07±0.84 | 3.34±0.86 | 0.164 |
| NEFA/(mmol·L-1) | 0.53 (0.47, 0.64) | 0.69 (0.57, 0.78) | 0.004 |
Tab 1 Comparation of general data and laboratory test indicators of obese patients between the two groups
| Item | NGT group (n=41) | IGR group (n=39) | P value |
|---|---|---|---|
| General data | |||
| Age/year | 32.00 (28.50, 42.00) | 35.00 (31.00, 41.00) | 0.338 |
| BMI/(kg·m-2) | 34.34 (30.80, 38.55) | 34.56 (31.95, 37.65) | 0.605 |
| WC/cm | 114.31±11.55 | 124.25±18.26 | 0.017 |
| HC/cm | 115.00 (107.00, 122.00) | 117.50 (110.25, 126.25) | 0.101 |
| WHR | 0.99±0.06 | 1.01±0.06 | 0.095 |
| Laboratory test indicators | |||
| FBG/(mmol·L-1) | 5.10 (4.63, 5.43) | 5.99 (5.33, 7.54) | 0.000 |
| PBG-0.5h/(mmol·L-1) | 8.61 (7.56, 9.92) | 9.24 (8.32, 11.41) | 0.043 |
| PBG-1h/(mmol·L-1) | 9.18 (6.97, 9.97) | 12.39 (9.87, 13.99) | 0.000 |
| PBG-2h/(mmol·L-1) | 6.41 (5.78, 7.03) | 10.35 (8.88, 12.86) | 0.000 |
| PBG-3h/(mmol·L-1) | 4.18 (3.78, 4.81) | 6.60 (5.71, 8.81) | 0.000 |
| FINS/(μIU·mL-1) | 15.12 (10.15, 20.69) | 21.20 (12.02, 28.63) | 0.064 |
| INS-0.5h/(μIU·mL-1) | 107.18 (80.63, 162.12) | 79.47 (25.74, 116.61) | 0.025 |
| INS-1h/(μIU·mL-1) | 127.05 (83.54, 171.24) | 113.44 (52.24, 175.94) | 0.307 |
| INS-2h/(μIU·mL-1) | 70.69 (45.45, 117.95) | 98.84 (53.35, 205.92) | 0.028 |
| INS-3h/(μIU·mL-1) | 20.75 (11.08, 28.14) | 48.82 (33.61, 106.97) | 0.000 |
| FCP/(ng·mL-1) | 3.95 (3.33, 4.85) | 4.67 (3.80, 5.73) | 0.037 |
| CP-0.5h/(ng·mL-1) | 11.83 (8.13, 13.76) | 7.96 (6.41, 12.01) | 0.015 |
| CP-1h/(ng·mL-1) | 13.22 (10.83, 16.94) | 10.77 (8.43, 16.27) | 0.115 |
| CP-2h/(ng·mL-1) | 11.43 (9.17, 14.97) | 13.68 (10.87, 18.24) | 0.051 |
| CP-3h/(ng·mL-1) | 6.01 (4.43, 7.84) | 10.29 (8.03, 12.70) | 0.000 |
| HbA1c/% | 5.50 (5.20, 5.70) | 6.45 (5.70, 7.95) | 0.000 |
| HOMA-IR | 3.31 (2.14, 4.56) | 6.24 (3.45, 8.17) | 0.002 |
| GPT/(U·L-1) | 40.00 (20.00, 69.00) | 67.00 (38.00, 87.00) | 0.013 |
| GOT/(U·L-1) | 22.00 (16.00, 35.75) | 36.00 (25.00, 54.00) | 0.001 |
| GGT/(U·L-1) | 40.50 (26.00, 55.00) | 52.00 (41.00, 77.00) | 0.002 |
| BUN/(mmol·L-1) | 4.83±1.08 | 4.60±0.99 | 0.324 |
| Cre/(μmol·L-1) | 79.97±12.98 | 74.28±13.37 | 0.060 |
| UA/(mmol·L-1) | 487.82±122.65 | 479.23±104.40 | 0.740 |
| TAG/(mmol·L-1) | 1.63 (1.25, 2.71) | 2.36 (1.83, 3.41) | 0.010 |
| TC/(mmol·L-1) | 5.01±1.09 | 5.44±0.99 | 0.068 |
| HDL-C/(mmol·L-1) | 1.09±0.24 | 1.06±0.20 | 0.531 |
| LDL-C/(mmol·L-1) | 3.07±0.84 | 3.34±0.86 | 0.164 |
| NEFA/(mmol·L-1) | 0.53 (0.47, 0.64) | 0.69 (0.57, 0.78) | 0.004 |
| Skeletal muscle PDFF | NGT group (n=41) | IGR group (n=39) | P value |
|---|---|---|---|
| Vastus lateralis | 6.49±1.87 | 7.36±2.48 | 0.080 |
| Rectus femoris | 6.08±2.00 | 6.44±2.02 | 0.431 |
| Vastus medialis | 4.85 (4.07, 5.85) | 5.04 (3.97, 6.90) | 0.353 |
| Vastus internus | 5.41 (4.44, 6.24) | 5.30 (4.47, 6.64) | 0.878 |
| Biceps femoris | 10.22±3.28 | 11.37±3.53 | 0.136 |
| Semitendinosus | 10.01 (6.98, 11.69) | 10.83 (7.87, 14.90) | 0.088 |
| Semimembranosus | 9.94 (7.56, 14.61) | 11.07 (8.99, 12.73) | 0.607 |
| Adductor magnus | 4.81 (4.18, 5.71) | 5.29 (4.46, 6.50) | 0.103 |
| Gracilis | 10.03 (8.48, 14.57) | 12.24 (9.43, 16.20) | 0.172 |
| Sartorius | 10.92 (8.94, 16.30) | 15.09 (11.92, 18.82) | 0.006 |
Tab 2 Comparison of IMAT content in various skeletal muscles of thigh between the two groups
| Skeletal muscle PDFF | NGT group (n=41) | IGR group (n=39) | P value |
|---|---|---|---|
| Vastus lateralis | 6.49±1.87 | 7.36±2.48 | 0.080 |
| Rectus femoris | 6.08±2.00 | 6.44±2.02 | 0.431 |
| Vastus medialis | 4.85 (4.07, 5.85) | 5.04 (3.97, 6.90) | 0.353 |
| Vastus internus | 5.41 (4.44, 6.24) | 5.30 (4.47, 6.64) | 0.878 |
| Biceps femoris | 10.22±3.28 | 11.37±3.53 | 0.136 |
| Semitendinosus | 10.01 (6.98, 11.69) | 10.83 (7.87, 14.90) | 0.088 |
| Semimembranosus | 9.94 (7.56, 14.61) | 11.07 (8.99, 12.73) | 0.607 |
| Adductor magnus | 4.81 (4.18, 5.71) | 5.29 (4.46, 6.50) | 0.103 |
| Gracilis | 10.03 (8.48, 14.57) | 12.24 (9.43, 16.20) | 0.172 |
| Sartorius | 10.92 (8.94, 16.30) | 15.09 (11.92, 18.82) | 0.006 |
| Model | Vastus lateralis | Semitendinosus | Sartorius | |||
|---|---|---|---|---|---|---|
| OR (95% CI) | P value | OR (95% CI) | P value | OR (95% CI) | P value | |
| Model 1 | 1.204 (0.975‒1.488) | 0.085 | 1.128 (1.010‒1.260) | 0.088 | 1.125 (1.021‒1.239) | 0.006 |
| Model 2 | 1.199 (0.959‒1.499) | 0.112 | 1.134 (1.008‒1.277) | 0.036 | 1.128 (1.020‒1.248) | 0.019 |
| Model 3 | 1.402 (1.037‒1.895) | 0.028 | 1.253 (1.051‒1.493) | 0.012 | 1.149 (1.016‒1.300) | 0.027 |
Tab 3 Multivariate Logistic regression analysis of IMAT content in the skeletal muscles of thigh with the risk of IGR in male patients with obesity
| Model | Vastus lateralis | Semitendinosus | Sartorius | |||
|---|---|---|---|---|---|---|
| OR (95% CI) | P value | OR (95% CI) | P value | OR (95% CI) | P value | |
| Model 1 | 1.204 (0.975‒1.488) | 0.085 | 1.128 (1.010‒1.260) | 0.088 | 1.125 (1.021‒1.239) | 0.006 |
| Model 2 | 1.199 (0.959‒1.499) | 0.112 | 1.134 (1.008‒1.277) | 0.036 | 1.128 (1.020‒1.248) | 0.019 |
| Model 3 | 1.402 (1.037‒1.895) | 0.028 | 1.253 (1.051‒1.493) | 0.012 | 1.149 (1.016‒1.300) | 0.027 |
| 1 | YAMAZAKI H, TAUCHI S, MACHANN J, et al. Fat distribution patterns and future type 2 diabetes[J]. Diabetes, 2022, 71(9): 1937-1945. |
| 2 | PICHÉ M E, TCHERNOF A, DESPRÉS J P. Obesity phenotypes, diabetes, and cardiovascular diseases[J]. Circ Res, 2020, 126(11): 1477-1500. |
| 3 | NEELAND I J, ROSS R, DESPRÉS J P, et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement[J]. Lancet Diabetes Endocrinol, 2019, 7(9): 715-725. |
| 4 | SACHS S, ZARINI S, KAHN D E, et al. Intermuscular adipose tissue directly modulates skeletal muscle insulin sensitivity in humans[J]. Am J Physiol Endocrinol Metab, 2019, 316(5): E866-E879. |
| 5 | YU F Y, FAN Y P, SUN H, et al. Intermuscular adipose tissue in type 2 diabetes mellitus: non-invasive quantitative imaging and clinical implications[J]. Diabetes Res Clin Pract, 2022, 187: 109881. |
| 6 | PARK S S, SEO Y K. Excess accumulation of lipid impairs insulin sensitivity in skeletal muscle[J]. Int J Mol Sci, 2020, 21(6): E1949. |
| 7 | KAHN D, MACIAS E, ZARINI S, et al. Quantifying the inflammatory secretome of human intermuscular adipose tissue[J]. Physiol Rep, 2022, 10(16): e15424. |
| 8 | WU H Z, BALLANTYNE C M. Skeletal muscle inflammation and insulin resistance in obesity[J]. J Clin Invest, 2017, 127(1): 43-54. |
| 9 | YARIBEYGI H, FARROKHI F R, BUTLER A E, et al. Insulin resistance: review of the underlying molecular mechanisms[J]. J Cell Physiol, 2019, 234(6): 8152-8161. |
| 10 | TUBBS E, CHANON S, ROBERT M, et al. Disruption of mitochondria-associated endoplasmic reticulum membrane (MAM) integrity contributes to muscle insulin resistance in mice and humans[J]. Diabetes, 2018, 67(4): 636-650. |
| 11 | GOODPASTER B H, THAETE F L, KELLEY D E. Thigh adipose tissue distribution is associated with insulin resistance in obesity and in type 2 diabetes mellitus[J]. Am J Clin Nutr, 2000, 71(4): 885-892. |
| 12 | GOODPASTER B H, KRISHNASWAMI S, RESNICK H, et al. Association between regional adipose tissue distribution and both type 2 diabetes and impaired glucose tolerance in elderly men and women[J]. Diabetes Care, 2003, 26(2): 372-379. |
| 13 | KIM J E, DUNVILLE K, LI J J, et al. Intermuscular adipose tissue content and intramyocellular lipid fatty acid saturation are associated with glucose homeostasis in middle-aged and older adults[J]. Endocrinol Metab (Seoul), 2017, 32(2): 257-264. |
| 14 | GOSS A M, GOWER B A. Insulin sensitivity is associated with thigh adipose tissue distribution in healthy postmenopausal women[J]. Metabolism, 2012, 61(12): 1817-1823. |
| 15 | MILJKOVIC-GACIC I, GORDON C L, GOODPASTER B H, et al. Adipose tissue infiltration in skeletal muscle: age patterns and association with diabetes among men of African ancestry[J]. Am J Clin Nutr, 2008, 87(6): 1590-1595. |
| 16 | THOMAS E L, FITZPATRICK J A, MALIK S J, et al. Whole body fat: content and distribution[J]. Prog Nucl Magn Reson Spectrosc, 2013, 73: 56-80. |
| 17 | NOUREDDIN M, LAM J, PETERSON M R, et al. Utility of magnetic resonance imaging versus histology for quantifying changes in liver fat in nonalcoholic fatty liver disease trials[J]. Hepatology, 2013, 58(6): 1930-1940. |
| 18 | 中国营养学会肥胖防控分会, 中国营养学会临床营养分会, 中华预防医学会行为健康分会, 等. 中国居民肥胖防治专家共识[J]. 中华流行病学杂志, 2022, 43(5): 609-626. |
| Chinese Nutrition Society Obesity Prevention and Control Section, Chinese Nutrition Society Clinical Nutrition Section, Chinese Preventive Medicine Association Behavioral Health Section, et al. Expert Consensus on Obesity Prevention and Treatment in China[J]. Chinese Journal of Epidemiology, 2022, 43(5): 609-626. | |
| 19 | ELSAYED N A, ALEPPO G, ARODA V R, et al. 2. classification and diagnosis of diabetes: standards of care in diabetes-2023[J]. Diabetes Care, 2023, 46(Suppl 1): S19-S40. |
| 20 | GARRETT W E Jr, CALIFF J C, BASSETT F H 3rd. Histochemical correlates of hamstring injuries[J]. Am J Sports Med, 1984, 12(2): 98-103. |
| 21 | YU F Y, HE B, CHEN L, et al. Intermuscular fat content in young Chinese men with newly diagnosed type 2 diabetes: based on MR mDIXON-quant quantitative technique[J]. Front Endocrinol (Lausanne), 2021, 12: 536018. |
| 22 | GRANADOS A, GEBREMARIAM A, GIDDING S S, et al. Association of abdominal muscle composition with prediabetes and diabetes: the CARDIA study[J]. Diabetes Obes Metab, 2019, 21(2): 267-275. |
| 23 | KIEFER L S, FABIAN J, ROSPLESZCZ S, et al. Assessment of the degree of abdominal myosteatosis by magnetic resonance imaging in subjects with diabetes, prediabetes and healthy controls from the general population[J]. Eur J Radiol, 2018, 105: 261-268. |
| 24 | KIEFER L S, FABIAN J, ROSPLESZCZ S, et al. Distribution patterns of intramyocellular and extramyocellular fat by magnetic resonance imaging in subjects with diabetes, prediabetes and normoglycaemic controls[J]. Diabetes Obes Metab, 2021, 23(8): 1868-1878. |
| [1] | SUN Lei, DAI Shifeng, CHEN Yuhua, XU Xinyi, JIANG Kele, LI Xiaowen, LI Chengjing, WU Tingting. Quantitative analysis of the distance between articular disc and condyle in patients with temporomandibular disorders [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(6): 684-692. |
| [2] | LI Zhuohang, YU Xindi, REN Jingya, SHEN Jia, DONG Suzhen, WANG Wei. Postoperative neurodevelopmental outcomes of end-to-side anastomosis for coarctation of the aorta [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(6): 753-759. |
| [3] | LUO Rui, YANG Gongxin, SHI Huimin, HAN Yongshun, HE Yining, TIAN Zhen, WU Yingwei. Study of imaging characteristics of Kimura disease in the head and neck [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(9): 1182-1189. |
| [4] | KANG Piao, ZHANG Ying, LI Huating. Research progress in food preferences mechanisms and their impact on obesity [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(9): 1190-1196. |
| [5] | JIANG Shuang, YU Jiwei. Progress of research on m6A demethylases in gastric cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(2): 271-277. |
| [6] | WU Qian, LI Huating. Progress of olfactory changes in metabolic diseases and the mechanisms [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(1): 131-136. |
| [7] | WU Kaimin, MA Jing, ZHAO Xuyun. Combined effects of intermittent fasting and thermogenic fat activation on the treatment and prevention of obesity in mice [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(9): 1131-1144. |
| [8] | WANG Jinghui, ZHANG Hong, ZHANG Rong, PENG Danfeng, YU Hairong, CHEN Xianghui, XUAN Ye, HU Cheng, GU Yunjuan. Screening for pathogenic variants in obese cohort using whole-exome sequencing [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(7): 882-889. |
| [9] | CHEN Jiaye, ZHANG Huifeng, LU Wenxian, PENG Daihui. Research progress of brain magnetic resonance imaging related to suicide in bipolar disorder patients [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(7): 939-944. |
| [10] | WU Ruifang, FENG Ming, MENG Jian. Review of role of fatty acid binding protein-4 in obesity-associated tumors [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(10): 1311-1316. |
| [11] | SHAN Yingyi, YU Haoyong. Advances in preoperative medical management of metabolic surgery [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(10): 1332-1338. |
| [12] | XIE Xiaolei, JIANG Peixin, ZHANG Jinghong, MO Junjian, WU Kefan, ZENG Kangyi. A review of RIZ1 regulation of the signal pathways in obesity and tumors [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(1): 114-119. |
| [13] | LIU Siyu, WU Bing, LI Xiaomin, ZHAO Lulu, CHEN Jun, AI Songtao. Preliminary exploration of diffusion-weighted imaging in pre-surgical planning of dermatofibrosarcoma protuberans [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(8): 1095-1102. |
| [14] | WU Ya, YIN Jun. Research progress of ketogenic diet regulating intestinal microbiome in the treatment of diseases [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(4): 545-550. |
| [15] | CHEN Liqi, XUE Zhuowei, WU Qingkai. Review of MRI-based three-dimensional digital model reconstruction of female pelvic floor organs [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(3): 381-386. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||